

Grant Agreement No.: 957338
Call: H2020-ICT-2020-1

Topic: ICT-54-2020
Type of action: RIA

BABELFISH

D2. USE CASE SCENARIOS, DETAILED
TECHNICAL SPECIFICATION,

IMPLEMENTATION WORK PLAN, AND
DEPLOYMENT PLAN (FINAL)

DUE DATE 02/02/2023

SUBMISSION DATE 02/02/2023

TEAM OwnYourData & Kybernos

VERSION 1.1

AUTHORS Christoph Fabianek, Sebastian Haas, Jan Lindquist

1

TABLE OF CONTENTS

1 Introduction 6

2 User Stories and Use Case Analysis (final) 7
2.1 Service Discovery 7
2.2 Organisation and User Accounts 7
2.3 Storage Service Results/Output 8
2.4 Validation Use Case 9
2.5 Interoperability Use Case 9
2.6 Supply Chain Management Use Case 10

3 Software Design and Analysis, Component Specification (final) 12
3.1 Software Modules 12

3.1.1 Decentralised Identifiers: did:oyd Methode 12
3.1.2 Semantic Overlay Architecture 14
3.1.3 Domain Specific Data Agreements 16

3.1.3.1 Intermediary Data Exchange Overview 17
3.1.3.2 Agreement Schema 19
3.1.3.3 Domain specific Data Agreement And Domain specific Data
Disclosure Agreement 22
3.1.3.4 Domain Specific Data Information 24

3.1.4 Semantic Container 28
3.1.5 Babelfish Component 29

3.2 Architecture Diagram 34

4 Detailed API Specification (preliminary) 38
4.1 API Specification for SDK Modules 38
4.2 API Specification for REST Services 38

4.2.1 Service Discovery APIs 38
4.2.2 Organisation and User Accounts APIs 40
4.2.3 Storage Provider APIs 41

4.3 Ontologies 44

5 Detailed Work Plan for Implementation and Deployment (final) 45
5.1 Work Plan for Implementation 45
5.2 Work Plan for Deployment 47

2

5.3 Risk Analysis 48

6 Business Model and Exploitation Plan (Preliminary) 49
6.1 Business Model Description 49
6.2 Business Value for the Blockchain Domain in General 50
6.3 Business Value and Relevance for ONTOCHAIN 51
6.4 Any Other Impact 52

7 Early User Engagement Plan 54

8 Conclusions 56

3

LIST OF FIGURES

Figure 2.1: Supply Chain Management Context 11

Figure 3.1: Artefacts of the did:oyd Method 13

Figure 3.2: SOyA Ontology Concepts and Relations 15

Figure 3.3: Data Agreements 17

Figure 3.4: Domain Specific Data Agreements 18

Figure 3.5: Architecture Overview 35

Figure 3.6: Data Flow Between Two Organisations 36

Figure 3.7: Detailed Sequence Diagram for Data Exchange 37

Figure 6.1: GANTT Chart 45

LIST OF TABLES

Table 3.1: Data Agreement Types Comparison 19

Table 3.2: Data Agreement Schema Overview 20

Table 3.3: Data Agreement Template Mapping between Individuals and
Organisations 22

Table 3.4: Data Agreement Schema for Supply Chains 24

Table 3.5: Template for Supply Chain Data Information 24

Table 3.6: Organisation Data Information 25

Table 3.7: Beekeeper/Producer Data Information 26

Table 3.8: Transport Service Provider Data Information 26

Table 3.9: Market Maker Data Information 28

Table 4.1: Service Discovery APIs 39

Table 4.2: Organisation and User Accounts APIs 41

Table 4.3: Storage Provider APIs 43

Table 4.4: Ontologies 44

4

ABBREVIATIONS

API Application Programming Interface

D2A Domain specific Data Agreement

D3A Domain specific Data Disclosure Agreement

DID Decentralised Identifier

DISP Data Intermediation Service Provider

DPP Digital Product Passport

DRI Decentralised Resource Identifier

DTLF Digital Transport and Logistics Forum

ESG Environmental Social Governance

FMCG Fast Moving Consumer Goods

IP Internet Protocol

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

NUTS Nomenclature des unités territoriales statistiques

OYDID Own Your Decentralised Identifier (did:oyd method)

SCM Supply Chain Management

SDG Sustainable Development Goals

SOyA Semantic Overlay Architecture

TCP Transmission Control Protocol

TFEU Treaty on the Functioning of the European Union

TSP Transport Service Provider

VC Verifiable Credential

VP Verifiable Presentation

YAML Yet Another Markup Language

5

1 INTRODUCTION

With the Gateway API component in the ONTOCHAIN environment we will address
the challenge of interoperability in a heterogeneous environment. Interoperability by
itself provides overall system benefits at different, distinct dimensions and a common
approach1 is to distinguish between the following aspects: technical (connectivity),
semantic (informational), and organisational (governance, business models etc.)

● On the technical level connectivity, syntactics, and protocols for data exchange
(e.g., APIs) and data storage underpin basic integration;

● the semantic level requires harmonised information with shared data models
and mutually agreed consent; and

● the organisational level (usually only addressed in more mature ecosystems)
encompasses shared objectives and policies between organisations.

In this document we lay out our planned design for the Gateway API. Based on
identified requirements in Deliverable 1 to answer the question of WHAT to build we
focus in Deliverable 2 on the HOW. It includes the final user stories, a description of all
system components together with the system architecture, and an implementation
and deployment plan.

This document serves as a comprehensive guide for the implementation and
development of the project, and it will be followed by Deliverable D3 "Software
Implementation" that will be available at the end of May 2023.

1 ‘Architecture constraints for Interoperability and composability in a smart grid’, Power and
Energy Society General Meeting, 2010 IEEE.
https://www.researchgate.net/publication/224178883_Architecture_constraints_for_Interopera
bility_and_composability_in_a_smart_grid

6

https://www.researchgate.net/publication/224178883_Architecture_constraints_for_Interoperability_and_composability_in_a_smart_grid
https://www.researchgate.net/publication/224178883_Architecture_constraints_for_Interoperability_and_composability_in_a_smart_grid

2 USER STORIES AND USE CASE ANALYSIS (FINAL)

This chapter provides a list of user stories describing the core functionality of the
components to be developed in the course of the NGI ONTOCHAIN funded Babelfish
project. User stories are grouped based on the Gateway API functionalities

● Service Discovery,
● Organisation and User Accounts,
● Storage Service Results/Output,

and the three main use cases to demonstrate the overall functionality:

● Data Validation Use Case,
● Interoperability Use Case, and
● Supply Chain Management Use Case.

2.1 SERVICE DISCOVERY

As a service developer I want to be able to register a service in a service catalogue so
that others can easily discover it.

As a service developer I want to be able to update and delete existing entries in a
service catalogue so that I can keep everything up-to-date.

As a service developer I need to authenticate myself against the Gateway API using
OAuth2 client credential flow to register, update, or delete entries.

As a developer I want to be able to query the service catalogue so that I’m able to
discover available services.

As operator of the service catalogue I want to be able to configure one of the available
storage providers to persist the service catalogue.

As an anonymous user I want to be able to retrieve the current entries in the service
catalogue without authorization.

2.2 ORGANISATION AND USER ACCOUNTS

As an organisation I want to be able to create an entry in a registry so that I can access
services with this identity.

7

As an organisation I want to be able to update and delete my organisation entry in the
registry so that I can keep it up-to-date.

As an organisation I want to be able to retrieve my stored data so that I can verify the
data.

As a user I want to be able to create an entry in a registry and assign it to an
organisation so that I can access services with this identity.

As a user I want to be able to update and delete my user entry in the registry so that I
can keep it up-to-date.

As a user I want to be able to retrieve my stored data (incl. configured chain, address,
balance) so that I can verify the data and have the latest version.

As operator of the organisation and user registry I want to be able to configure one of
the available storage providers to persist the registry.

As a user I need to authenticate myself against the Gateway API using OAuth2 client
credential flow to access organisation and user accounts.

2.3 STORAGE SERVICE RESULTS/OUTPUT

As a developer I want to be able to create a collection so that I can store objects in the
collection.
Note: a collection can be interpreted as a folder in a file system and groups together
objects; many storage mechanisms provide this kind of grouping sometimes also
referred to as repository or bucket

As a developer I want to be able to update and delete collection entries so that I can
keep them up-to-date.

As a developer I want to be able to retrieve all information of a collection and a list of
all accessible collections so that I can verify the latest state.

As a developer I want to be able to create objects in a collection so that I can have a
flexible storage mechanism.

As a developer I want to be able to update and delete objects in a collection so that I
can keep them up-to-date.

As a developer I want to be able to retrieve the details about an object so that I can
work with the data and have the latest version.

8

As a developer I want to be able to specify the backend-storage to be used for
managing collections and objects. Available storage mechanisms for on-chain data
will be Convex and ONTOCHAIN’s ethereum based blockchain (Bellecour) and for
off-chain data Semantic Container and Amazon S3 can be used.

As a user I need to authenticate myself against the Gateway API using OAuth2 client
credential flow to access storage services.

2.4 VALIDATION USE CASE

As a knowledge worker I want to be able to describe data models in a simple format
(e.g., YAML) that include both general and self-defined data types.

As a knowledge worker I want to manage different versions of a data model and share
data models online for collaborative authoring.

As a knowledge worker I want to be able to define terms of constraints on the content,
structure and meaning of a graph beyond data types.

As a knowledge worker I want to be able to transform a description of a data model
into an RDF graph that complies with the semantic web standards (i.e., RDFS/OWL)
for data model representations.

As a service/application I want to be able to validate a data record against a data
model representation.

As an end user I want to be able to validate a data record against a data model
representation on a GUI and retrieve human-readable explanations for violations in
the defined constraints.

2.5 INTEROPERABILITY USE CASE

As a service/application I want to be able to document my API endpoints, used data
model, and applicable usage policies in a Service Description so that this information
can be used for integration with other services/applications.

As a service/application I want to be able to connect to other services/applications
independent of the respective API endpoints so that I can exchange data without
technical integration limits.

9

As a service/application I want to be able to connect to other services/applications
independent of the respective data models so that I can exchange data without
semantic integration limits.

As a service/application I want to be able to have usage policies automatically
validated upon data exchange so that I can exchange data with full governance
conformance.

As services/applications that exchange data we want to be able to have this data
exchange documented in a domain specific data (disclosure) agreement so that full
governance conformance is unambiguously documented.
note: data agreements build on the work from ONTOCHAIN call #2 funded project
PS-SDA

2.6 SUPPLY CHAIN MANAGEMENT USE CASE

For two strategically selected supply chain management purposes we specify and
parametrise the use cases of service discovery (section 2.1), organisation and user
account (section 2.2), storage service (section 2.3) to enable and demonstrate supply
chain specific user stories. Together with both other main use cases i.e. validation
(section 2.4) and interoperability (section 2.5) we are aiming at a set of supply chain
functionality which we design to create a Digital Product Passport scheme as follows:

As a supply chain party I want to be able to share and receive relevant data so that this
data can be used by other supply chain parties for planning, optimization and
documentation purposes.

As a transport service provider I want to be able to share and receive relevant data so
that this data can be used by other supply chain parties for planning, optimization
and documentation purposes.

As a supply chain party I want to be able to share and receive relevant data so that this
data can be used by other supply chain parties for planning, optimization and
documentation purposes.

As a market maker I want to be able to provide structured food product information
so that this data can be used by customers for market and product differentiation.

As a regulator I want to be able to design, co-create and mint purpose-driven data
circles within the supply chain data space so that the shared data can be (re-)used for
data-driven circular economy policy schemes like the Digital Product Passport and
supply chain management regulations in general.

10

As a region I want to be able to document and shape public procurement practices to
be able to reach net zero targets for the food and transport sector.

As a data intermediation service provider I want to be able to structure and govern a
product data space around the regulator-driven design artefact Digital Product
Passport so that this structured and incentivised data exchange can be used by
consumers, regulators, investors and insurance companies for their purposes.
note: the Digital Product Passport combines information from the complete supply
chain and also includes Verifiable Presentations, i.e., attestations from third parties

Figure 2.1: Supply Chain Management Context

11

3 SOFTWARE DESIGN AND ANALYSIS, COMPONENT SPECIFICATION

(FINAL)

This chapter provides the architecture diagram and detailed technical specification
of the components developed in the course of the project.

3.1 SOFTWARE MODULES

This section describes what will be developed in the context of ONTOCHAIN OC3 in
terms of technical components.

3.1.1 Decentralised Identifiers: did:oyd Methode

Non-blockchain based DIDs are a type of Decentralised Identifiers that do not rely on
blockchain technology to function. There are different ways to implement
non-blockchain DIDs, but one common approach is to use a distributed ledger or a
distributed hash table (DHT) to store and manage the identifiers.

The main difference between blockchain-based and non-blockchain based DIDs is
that the latter do not rely on the consensus mechanism of the blockchain to ensure
their integrity and availability. Instead, they use other methods such as digital
signatures, certificate authorities, or trusted third parties to establish trust and ensure
that the identifiers are authentic and accurate.

The did:oyd method2 is an example of a non-blockchain based DID methode and
provides a self-sustained environment for managing digital identifiers: it links the
identifier cryptographically to the DID Document and through also cryptographically
linked provenance information in a public log it ensures resolving to the latest valid
version of the DID Document.

Information about DIDs, DID Documents and associated logs are stored in an OYDID
repository. This repository is a centralised (online) storage but the clone operation
allows duplicating any information to another repository and in this way provides
decentralisation. An OYDID repository can be hosted by anyone and it is up to the
owner of DID to select a trusted provider. Through the decentralised nature of the
did:oyd method it is at any time possible to move to other repositories.

2 W3C conform DID method specification: https://ownyourdata.github.io/oydid/

12

https://ownyourdata.github.io/oydid/

Figure 3.1: Artefacts of the did:oyd Method

In the course of the ONTOCHAIN project the did:oyd method will be extended with
the following functionality to act as identifier within the Gateway API and towards
services:

● DID Delegation
Delegation is a mechanism that allows an entity to delegate the management
of its DID to another entity. This can be useful in situations where an entity is
unable or unwilling to manage its own DID. The delegator (the entity that
wants to delegate control of its DID) gives the delegate (the entity that will
manage the DID on behalf of the delegator) permission to perform certain
actions on the DID.
Delegation for did:oyd will allow an actor to give temporary access to others
and specifically in the context of interaction between services this is a necessary
functionality.

● Verifiable Credentials and Verifiable Presentations
Verifiable Credentials (VCs) provide a secure, efficient, and private way to verify
claims about individuals and entities, and can help to reduce the need for
intermediaries, increase trust and accessibility, and automate verification
processes.
Verifiable Presentations (VPs) are a way to present one or more Verifiable
Credentials to a verifier in a secure and privacy-preserving way. VPs allow an

13

individual to selectively share only the information that is necessary for a
specific transaction or interaction, rather than sharing all of their personal
information.
VCs and VPs for did:oyd will allow actors to seamlessly attest information,
especially to be used for data agreements.

● DID Test Suite compliance
The DID test suite compliance helps to ensure that the did:oyd method
implementation is of high quality, compatible with other systems or
applications, and compliant with the relevant standards. It also makes it easier
to integrate OYDID into other systems or applications and speed up the overall
development process.
The did:oyd method is a newcomer in a series of established DID methods. By
ensuring full compliance of did:oyd with existing standards and being a
pioneer in developing self-sovereign data management methods, OYDID will
provide a fresh breath for applications in the ONTOCHAIN environment.

3.1.2 Semantic Overlay Architecture

The Semantic Overlay Architecture (SOyA) is a lightweight, semantic-web based
approach to describe data structures in simple terminology3. This description includes
groups of data records with the same attributes, references between data records,
and additional information in the form of overlays for these data structures.

At the core of the SOyA approach is the SOyA structure, a YAML-based data model for
describing graph data, which consists of one or more soya:Base, that represent RDF
classes and their properties, and zero or more soya:Overlay, that provides additional
information and context to soya:Base as well as processing definitions. Furthermore,
to support developers in conducting the most common data processing for graph
data, we have defined a number of predefined soya:Overlay e.g., such as
soya:AnnotationOverlay for data model description in human readable terms and
soya:ValidationOverlay for constraint checking - see Figure 3.2.

It is important to note that SOyA has the same flexibility as RDF (Resource Description
Framework) to describe data structures, i.e., any kind of data or documents can be

3 W3C conform specification: https://ownyourdata.github.io/soya/

14

https://ownyourdata.github.io/soya/

described. With SOyA it is possible to register any current and future data models
handled by ONTOCHAIN services and applications.

Figure 3.2: SOyA Ontology Concepts and Relations

The following tools are available to work with SOyA structures:

i. soya-cli is a JavaScript-based command line interface (CLI) which allows
developers to easily interact and work with SOyA by providing functionality to
deal with data modelling and various SOyA overlays

ii. soya-repository for managing SOyA structures, allowing data model
creation, versioning, and storage, among others, similar to GitLab for source
code management

iii. soya-js provides interfaces in JavaScript for handling SOyA structures and
interacting with SOyA repositories

In the scope of the ONTOCHAIN Gateway API, SOyA is the underlying mechanism for
all data management tasks. In the Validation Use Case (section 2.4) the Validation
Overlay is used with an open source library4 to verify conformance of a data set (i.e., an
instance of a SOyA structure). This use case will be demonstrated through a specific
DID Lint service that is available online with a web frontend, as well as through APIs -
this service will also be a documented example for the use of a Service Description in
the Service Catalogue. Further application areas are a general linting service for Usage
Policies and Data Agreements used in the project.

In the Interoperability Use Case (section 2.5) Alignment and Transformation Overlays
will be used to transform compatible datasets between different representations. An

4 ​​https://github.com/zazuko/rdf-validate-shacl

15

https://github.com/zazuko/rdf-validate-shacl

Alignment Overlay references classes and properties within a SOyA structure to
existing ontologies using class and property subsumption relations. Through transitive
mapping between SOyA structures a Translation Overlay can be derived that
transforms instances between different ontologies.

Note: A transitive mapping is a mathematical concept used in set theory and abstract
algebra. It refers to a function or a mapping from one set to another set, where if an
element from the first set is mapped to an element in the second set, and that
second element is mapped to a third element in the second set, then the original
element must also be mapped to that third element. In other words, a transitive
mapping preserves the relationship between elements in the first set and elements in
the second set, such that if element A maps to element B, and element B maps to
element C, then element A must also map to element C. This relationship is known as
transitivity.

The Supply Chain Management Use Case (section 2.6) finally brings together
validation and transformation using SOyA to demonstrate data exchanges along the
value chain for Honey around Vienna as a fast moving consumer good (FMCG). Data
exchange is a crucial aspect of supply chain management because it enables the
smooth flow of information between different organisations and systems. This in turn
allows better coordination, communication, automation and performance tracking,
thus improving efficiency, reducing costs and increasing customer satisfaction.

3.1.3 Domain Specific Data Agreements

The exchange of data has two main parties, the data consumer of the data or
sometimes called data user, and the data source, the one who generates the data. In
order to enable the sharing of the data, metadata needs to be added that helps set
the usage policies of use of the data.

The following diagram depicts how organisation A and B communicate through the
intermediary. The data source, organisation A, informs the intermediary of the usage
policy to access the data as the data consumer, organisation B. Neither need to
communicate directly and the intermediary has all the information to match and
validate the usage policy in order to create a Domain specific Data Disclosure
Agreement (D3A) - more in next section.

16

Figure 3.3: Data Agreements

Babelfish is hosted as a central service in the ONTOCHAIN environment but still
follows decentralised design principles by applying content-based addressing for all
data and metadata stored on it. In case of a malicious hoster it will always be possible
for the community to select another intermediary and migrate any content without
any loss of information or functionality.

3.1.3.1 Intermediary Data Exchange Overview

The agreements that are setup between parties need to be distinguished based on
the type of relationship. Individuals and organisations have similarities when setting
up these agreements. Both have data relating to their activity. Individuals may have
health data or activity data from smart watches and organisations generate data
relating to production or a service they provide. The challenge for both is how to
perform data portability. The intermediary has a central role to facilitate the sharing of
data and acts on behalf of the organisation. Babelfish can act as such an intermediary
and agreements will be the basis for creating the metadata that facilitates the
exchange of the data.

The following diagram compares data exchange for individuals which iGrant.io in
previous ONTOCHAIN call #2 developed a Data Disclosure Agreement (PS-SDA) with

17

the Babelfish data exchange developed in this project for any domain specific
application. PS-SDA is considered as one of these domains, namely personal data
domain.

Figure 3.4: Domain Specific Data Agreements

18

The relation between the two is similar and the following table describes the
matching of the type of agreements.

Relation Individual Organisation

owner of data with
intermediary

Personal Data Agreement
(DA)

Domain Data Agreement
(D2A)

intermediary with third
party

Data Disclosure Agreement
(DDA)

Domain specific Data
Disclosure Agreement
(D3A)

Table 3.1: Data Agreement Types Comparison

Note: due to the size of a Data Agreement it is always stored off-chain on the
configured Storage Provider; nevertheless, the hash-value of the Data Agreement is
stored on-chain to guarantee immutability and timeliness

3.1.3.2 Agreement Schema

This section describes the agreement schema and matches the terms associated with
individuals data sharing and with organisation data sharing in the context of supply
chain.

The following table gives an overview of the schema and is based on the Data
Disclosure Agreement (Appendix A) from iGrant.io. The schema is based on the
Kantara Consent Notice [3], as well as ongoing ISO standardisation under ISO project
27560, Consent record information structure.

Purpose(s) ● Purpose - describe (highest risk first)
● Lawful basis
● Domain Data Information, DDI (categories, sensitivity or

optional)

19

https://github.com/decentralised-dataexchange/data-exchange-agreements/blob/main/docs/datadisclosure-agreement-specification.md#data-disclosure-agreement

Processing ● Processing method (copy, combined or automated
decision making)

● Storage location
● Retention (how long data kept)
● Service name applicable for purpose
● Jurisdiction data stored
● Third parties
● Exercise privacy rights (link to withdraw)
● Code of conduct
● Assessment performed
● Privacy policy url

Event ● Event time
● Event type (implicit, explicit or regular)
● Event state (ex. notice, consent or termination)
● Validity duration (how long consent valid)
● Signing Data Controller
● Signing individual

Table 3.2: Data Agreement Schema Overview

The following table is a mapping of the agreement template between individual and
organisation. Purpose of the mapping is to identify if anything is missing or if field
names should be different.

Individual Organisation
(domain specific)

Comments

Field Type Field Type

Purpose(s) Purpose(s)

- Purpose
description

string - Purpose
description

string

- Purpose type dpv:Purpose - Purpose type sc:Purpose

- lawful basis string - lawful basis string

- Data
information

list - Data
information

list refer to supply
chain data
information
section

20

Individual Organisation
(domain specific)

Comments

Field Type Field Type

Processing Processing

- processing
method

dpv:Processing - processing
method

string

- retention
period

ISO 8201
duration

- retention
period

ISO 8201

- geographic
restrictions

string - restrictions any restrictions
or conditions for
sharing data

- third party list - third party list refer to
organisation

- storage
location

string - storage
location

string

- services list - services list

- jurisdiction string - jurisdiction string

- privacy rights reference - exercise rights reference type is a
reference
pointing to
information to
exercise rights
like withdrawal

- code of
conduct

object - code of
conduct

object content is not
defined; can
simply be a URL

- impact
assessment

object - impact
assessment

object content is not
defined; can
simply be a URL

- privacy policy URL - policy URL terms of use

Event Event

21

Individual Organisation
(domain specific)

Comments

Field Type Field Type

- event time ISO 8201 - event time ISO 8201

- event type string - event type string

- event state string - event state string

- duration ISO 8201
duration

- duration ISO 8201
duration

only if binding
to an
agreement like
consent and
how long it is
valid.

- entity id DID - entity id DID the one that
triggered the
event

Agreement signers Agreement signers

- individual ID DID organisation id DID

- data
controllers

list organisation id DID

Table 3.3: Data Agreement Template Mapping between Individuals and Organisations

Note: a Data Agreement can be initiated by any party participating in a data exchange
but is usually requested by the receiving actor to document legal compliance; it is also
up to the receiver to accept data only with a suitable Data Agreement

3.1.3.3 Domain specific Data Agreement And Domain specific Data
Disclosure Agreement

This section explains the supply chain related agreements and which fields are
mandatory. Literally all mandatory fields match.

Field D2A
Mandatory

D3A
Mandatory

Description

- Purpose
description

M M Purpose description for processing data

22

Field D2A
Mandatory

D3A
Mandatory

Description

- Purpose type M M Purpose category/type using ontology
language

- lawful basis GDPR requirement to indicate reason for
processing data: consent, legal obligation,
contract, vital interest, public task or
legitimate interest

- Data information M M List of data attributes for this specific
purpose

- processing
method

Processing method using ontology
language

- retention period M M how long data is stored before being
deleted; mainly a privacy requirement and
data minimisation

- restrictions Restrictions set for processing of data like
geographic restrictions, cannot leave the
EU

- third party M M List of third parties that receive a copy of
the data

- storage location Location data is stored after processing

- services Service or services the purpose applies to

- jurisdiction M M Jurisdiction the controller is registered

- exercise rights (M) (M) Reference to information on how to
exercise rights. Mainly used for privacy and
ability to withdraw

- code of conduct Indicate any code of conduct followed by
data controller

- impact
assessment

Indicate any assessment and identified
risks with processing of the data

- policy (M) (M) Mainly for privacy policy URL

23

Field D2A
Mandatory

D3A
Mandatory

Description

- event time M M Following fields used to register events in
the lifecycle of an agreement; time the
event took place

- event type M M Was event implicit or explicit (ex consent
given) or regular

- event state M M State in lifecycle; for example for privacy,
notice, consent and termination; for
domain specific the state has to be
specified

- duration M M If event is binding like a consent how long
is valid be it expires

- entity id M M Indicate which entity issued event

() mean it is mandatory for privacy domain and not necessary for other domains like supply
chain

Table 3.4: Data Agreement Schema for Supply Chains

Note: Data Agreements and Smart Contracts share some properties but Data
Agreements have an actual wider scope and also require a dedicated negotiation
phase between participating parties that could be cumbersome to implement to the
full extend on a distributed ledger; upon the actual data exchange the content of a
Data Agreement could be documented as a Smart Contract

3.1.3.4 Domain Specific Data Information

The data that is collected requires a data model to validate data sources and also
match with data consumers. A template is created for evaluating each attribute
generated by an organisation. This is the information collected on each attribute:

1. Format: used to perform validation and translation
2. Type: data category type
3. Sensitivity: any restrictions to access attribute and are Competitively Sensitive

Information (CSI)
4. Proof with VC: indicate if attribute has a proof in the form of a verifiable

credential (VC)

This is an example of the template to be filled out by each organisation.

24

Attribute Format Type Sensitivity Proof
with
VC

Description

Table 3.5: Template for Supply Chain Data Information

Organisation

Attribute Format Type Sensitivity Proof
with VC

Description

id DID identifier yes Reference is internal to
intermediary

organisation
id

string
(1)

identifier no yes Organisation registration
number based on GS1 ID or
national ID (ex Austrian eID)

address string tracking no no

membership string yes yes sector associations

Note (1) If a specific schema is used it is indicated in type. Information is used to validate
transfer of data.

Table 3.6: Organisation Data Information

Beekeeper / Producer

Attribute Format Type Sensitivity Proof
with VC

Description

membership yes yes e.g., chamber of agriculture

id DID identifier yes Reference is internal to
intermediary

bee keeper
id

string identifier yes external reference format not
set

produced by DID identifier no ID is reference to organisation

25

https://www.gs1.at/gln
https://www.usp.gv.at/en/index.html

Attribute Format Type Sensitivity Proof
with VC

Description

record

production
batch
volume

float characte
ristic

yes

production
batch date

ISO8201 characte
ristic

yes

bee
collection
area

string
(coordi
nates)

characte
ristic

no Term used is “wanderkarte”.

Table 3.7: Beekeeper/Producer Data Information

Transport Service Provider (TSP)

Attribute Format Type Sensitivity Proof
with VC

Description

membership string characte
ristic

yes yes transport system roles (eg
Infrastructure Manager or
Railway Undertaking),
transport networks, TEN-T
corridors

id DID identifier yes Reference is internal to
intermediary

transported
company

DID identifier no ID is reference to
organisation record

vehicle
priority

integer characte
ristic

no Note 1

vehicle label string characte
ristic

no Designation of vehicle or
vehicles used

optimization
time

ISO8201 characte
ristic

yes Note 2

optimization string characte yes Note 3

26

algorithm ristic

optimization
metadata

object characte
ristic

yes Metadata required for
optimization

Table 3.8: Transport Service Provider Data Information

Note 1: Vehicles should be annotated with a priority to rank their importance with regards to
their respective keeping time constraints, i.e. when valid working hours (from
earliestDepartureTime until latestArrivalTime) are exceeded the penalty for not finishing the
tour on time is multiplied by the factor priority. In this way vehicles with a higher number are
more likely to have tours that are still within their specified working hours. For instance, the
optimization would evaluate the meeting of the time constraints of a vehicle with the priority
of 50 as high as meeting the time constraints of five vehicles with a priority of 10. That also
applies when secondsToPenaltyRatioForOutOfWorkingHours is set.

Note 2: optimizationTime specifies the desired maximum run time in seconds this request
can use for the optimization. The actual run time can be lower if a solution is found quicker, or
exceeded when, for example other parts of the routing request, e.g. routing, parsing,
serialising of the request response, take longer.

Note 3: optimizationAlgorithm specifies which optimization algorithm is to be used. The
following options are available:

● NO_OPTIMIZATION – no optimization is carried out, i.e. the algorithm will generate a
tour for one vehicle per depot without carrying out routing and without trying to fulfil
the constraints

● GREEDY_TSP – Greedy Algorithm: A route is created, by always travelling to the closest
order from the current point of view until all orders have been served. This does not
consider order or vehicle priorities.

● BRUTE_FORCE_TSP – All delivery order and transport combinations are generated
and the one with the least consumed travel time is selected. This does not consider
order or vehicle priorities.

● CONSTRAINT_SATISFACTION – Powerful Algorithm based on constraint solving that
tries to find an optimal solution that meets all the soft/hard constraints and optimises
for the travel time that is used for the routes. This algorithm should preferably be used.

Market Maker / Shop / Store

Attribute Format Type Sensitivity Proof
with VC

Description

membership string characte
ristic

yes yes trade groups (eg “Wiener
Detailmärkte" as regulated by
the “Wiener Marktamt”

27

Attribute Format Type Sensitivity Proof
with VC

Description

id DID identifier yes yes Reference is internal to
intermediary

Market /
shop
credentials
like

string characte
ristic

no no address or polygon for
market space

Transport
Label basic
(1)

string D3A
attribute

yes yes gr:DeliveryMethod

Transport
Label
advanced (1)

string D3A
attribute

yes yes gr:DeliveryChargeSpecificatio
n

Designation
of Origin
basic (1)

string D3A
attribute

yes yes gr:hasGlobalLocationNumber

Designation
of Origin (1)
advanced

string D3A
attribute

yes yes Polygon for production site

Note - (1) Data consumption by Market Maker

Table 3.9: Market Maker Data Information

3.1.4 Semantic Container

A Semantic Container is a Docker-based data storage used to store and manage
information in a semantically meaningful way. It provides a way to represent data as a
collection of entities and relationships, making it easier to understand, process and
query. This type of storage can be used in the context of semantic web and linked
data, where the focus is on using structured data to enable more intelligent and
automated processing of information on the web.

In the ONTOCHAIN environment Semantic Container can be used as a low-cost local
storage provider. It natively uses DIDs and DRIs (decentralised resource identifiers) for
addressing data and has basic functions for generating provenance information and
validating compliant usage policies between data controller and data subject. The
main benefits of using a local storage provider (in contrast to an online storage

28

provider like Amazon S3) are speed (data can be accessed and processed much
faster), offline availability (access even when the device is not connected to the
internet), security (using the device's security mechanisms and making it less
susceptible to security breaches than online storage), and cost (does not incur the
costs of server hosting and network bandwidth).

In the course of the ONTOCHAIN project the existing Semantic Container
implementation will be extended with the following functionalities:

● Storage Backend for Gateway API
extend Semantic Containers to cover all functionalities required by the Storage
Provider APIs (section 4.2.3)

● W3C conform specification
write and publish a complete specification for interacting with Semantic
Container

3.1.5 Babelfish Component

The ONTOCHAIN Gateway API is the entry point for developers and users of
ONTOCHAIN services and is composed of three main modules. This section gives a
short description for each of the modules, references the API endpoints described in
chapter 4, and provides the planned documentation and use-cases.

● Service Discovery: search deployed ONTOCHAIN services with structured
queries and access them directly
APIs: section 4.2.1
tutorial: registering the validation service

● Accounts Management: functions related to organisation and user accounts
and access rights
APIs: section 4.2.2
documentation: curl statements and Postman collection to interact with APIs

● Data Storage: high-level interfaces that are common to all of the supported
backend storage services: Semantic Container (off-chain data), Amazon S3
(off-chain data), Convex (on-chain data), ONTOCHAIN Bellecour (on-chain data)
API: section 4.23
tutorial: supply chain management use case

The relevant data structures used in the Babelfish component are described below.

Service Description
the service description is a JSON object with three required keys:

29

Service Description Structure

{
"interface": { Open API Specification },
"data": " SOyA structure ",
"governance": { Usage Policy }

}

Details:

● service-id: unique id of the service for referencing purpose provided by the
system

● interface: describes the interface of the service (specifically API endpoints)
and general aspects of the entity using the Open API Specification v3 (also
known as Swagger documentation)

● data: describes the expected data structure using SOyA (Semantic Overlay
Architecture) structures; if the data structure does not exist, this entry shall
provide null; it is important to note that the content of this field is optional
and services in ONTOCHAIN are not required to use SOYA -however, if those
services decide to use SOyA, they benefit from the additional functionality in
the integration helper

● governance: describes the usage policy based on the structure from the Data
Privacy Vocabulary5 - this information is used as input for Data Agreements
(section 3.1.3) and relevant attributes are described there

Service Description Example

{
"service-id": 1,
"interface": {

"info": { "title": "DID Lint" },
"servers": [{"url": "https://didlint.ownyourdata.eu"}],
"party": "data_consumer",
"paths": {

"/api/validate": {
"post": {

"requestBody": {
"content": {

"application/json": {

5 https://w3c.github.io/dpv/dpv/

30

https://w3c.github.io/dpv/dpv/

"schema": {}
}

}
}

}
}

}
},
"data": "zQmc76XfAkKxjFhHUANsq2yLxvt1FNkwHULChENskd9PJ9T",
"governance": {

"sc:hasProcessing": ["sc:Use"],
"sc:hasPurpose": "sc:Purpose",
"sc:hasExpiryTime": "6 months"

}
}

Organisation Record
an organisation record is a JSON object with a minimum of the following attributes:

Organisation Record Structure

{
"name": " organisation name ",
"description": " information about organisation ",
"address": " street number, zip code, city, country ",
"governance": { Usage Policy }

}

Details:

● organization-id: unique id of the organisation for referencing purpose
provided by the system

● name, description, address: mandatory information about the
organisation

● governance: optional field to provide a default governance for data provided by
this organisation; if governance is provided in the service description the
information there prevails

Organisation Record Example

{

31

"organization-id": 1,
"name": "ACME Inc.",
"description": "generic business in instructional settings",
"address": "1000 Main St, 37917, Knoxville, US",
"governance": {

"sc:hasProcessing": "sc:Processing",
"sc:hasPurpose": "sc:Purpose",
"sc:hasExpiryTime": "2 months"

}
}

User Record
a user record is a JSON object with a minimum of the following attributes:

User Record Structure

{
"name": " user name ",
"email": " email of user ",
"organization-id": long,
"dlt": [on-chain data storage information]

}

Details:

● user-id: unique id of the user for referencing purpose provided by the system
● name, email: mandatory information about user
● organization-id: mandatory link to existing organisation
● dlt: optional information about the distributed ledger and required details that

are used when this user performs write operations for on-chain data; available
options are:

○ Convex
○ Bellecour

User Record Example

{
"user-id": 1,
"name": "John Doe",
"email": "john@doe.com",
"phone": "(555) 123 4567",
"organization-id": 1,
"dlt": [{

32

"type": "Convex",
"network": "testnet",
"address": 48

}]
}

Collection Information
a collection information is a JSON object with the following attributes:

Collection Information Structure

{
"name": " collection name ".
"storage": { off-chain data storage information },
"dlt": { on-chain data storage information }

}

Details:

● collection-id: unique id of the collection for referencing purpose provided
by the system

● name: optional name of the collection
● storage: mandatory information about the off-chain data storage provider

used for this collection; available options are:
○ Semantic Container
○ Amazon S3

● dlt: optional information about the on-chain data storage provider used for
this collection; available options are:

○ Convex
○ Bellecour

Collection Information Example

{
"collection-id": 1,
"name": "My Repository".
"storage": {

"type": "Semantic Container",
"url": "https://honey-oc3.data-container.net" },

"dlt": {
"type": "Convex",
"user-id": 1

33

}
}

34

Object Metadata
object metadata is a JSON object with the following attributes:

Object Metadata Structure

{
"collection-id": long,
"name": " object name "

}

Details:

● object-id: unique id of the object for referencing purpose provided by the
system

● name: optional name of the object
● collection-id: mandatory reference to the collection where the object

should be persisted

Object Metadata Example

{
"object-id": 1,
"collection-id": 1,
"name": "My Object"

}

3.2 ARCHITECTURE DIAGRAM

This section focuses on the architecture diagram, a visual representation of the
system's components, relationships, and interactions. The diagram provides an
overview of the system's design, which helps stakeholders understand the system's
structure and key elements.

Figure 3.5 depicts the Gateway API in the context of the overall ONTOCHAIN
environment. It spans a data space for internal as well as external services through a
well-defined entry point for users. This includes service discovery in the Service
Catalogue (public access), requires authentication as a user registered in the accounts
management component, allows applications to enlist themselves and interact with
other applications through service descriptions, and provides high-level APIs to read
and write from available storage providers. The Integration Helper functionality in the
Gateway API provides specific interoperability features to assist developers in

35

integrating their applications and services with other - already existing - functionality
in the ONTOCHAIN environment.

Figure 3.5: Architecture Overview

Figure 3.6 provides an overview of the logical components in the Gateway API. It acts
as a Data Controller / Intermediary between different organisations that want to
exchange data. It consists of

● a well-defined API endpoints (described in section 4.2) for read and write
access,

● uses internally and - where applicable - also externally DIDs for identifying
users, organisations, and records

● manages datasets through data models defined by SOyA (Semantic Overlay
Architecture),

● ensures governance through the use of Data Agreements that document any
data exchange, and

● persists any information in configurable stores (Domain Specific Data Stores),
that can be further sub-classified into

○ Service Catalogue: a list of available services
○ Orgs & Users: account management data
○ Storage Provider: configurable general purpose data store that supports

off-chain and on-chain storage

36

Note: only hash-values of datasets are stored on-chain to take into account the limited
storage capabilities of blockchains; for storing this hash-values Smart Contracts will be
deployed on Bellecour and Convex

Figure 3.6: Data Flow Between Two Organisations

It is important to note that a data exchange between two organisations through the
Gateway API is actually a 2-step process: the intermediary first receives data from
Organisation A and persists it (step 1) and upon request for the data from
Organisation B the intermediary provides the data. The concrete process that
happens in a single step is shown in the sequence diagram depicted in Figure 3.7.
Using the example from above in the first step Organisation A is Entity A and the
Gateway API acts as Entity B. In the second step the Gateway API is Entity A and
Organisation B is Entity B.

37

Figure 3.7: Detailed Sequence Diagram for Data Exchange

Step 1 or 2: a data exchange can be triggered by both of the participating entities

Step 3: upon starting a data exchange the Usage Policies (if present) for the
participating entities are evaluated and checked for compliance; if successful, a
Data Agreement is compiled based on the Usage Policies documenting the
governance aspects of this data exchange

Step 4: data is retrieved from the data providing entity

Step 5: in case the applicable Service Descriptions provide information about
transforming data between the two entities, this steps performs this
transformation

Step 6: the payload is forwarded to the data consuming service

Step 7: the complete data exchange is documented in the configured Storage
Provider (configuration is documented on-chain)

38

4 DETAILED API SPECIFICATION (PRELIMINARY)

4.1 API SPECIFICATION FOR SDK MODULES

No SDK in this implementation

4.2 API SPECIFICATION FOR REST SERVICES

This section describes the REST APIs for the services developed in the course of the
project. Details and examples can also be found on the following public HackMD:
https://hackmd.io/faNBTCUcSRyQsLOf_Jhdag.

4.2.1 Service Discovery APIs

Service Discovery APIs provide a programmable way of discovering the services
provided through the ONTOCHAIN ecosystem. Access to the functions will be
authenticated and regular users will only have access to read operations. Write
operations will be accessible only to administrators, unless noted in the function’s
description.

HTTP
method URI Arguments Return

value Description

GET /list?page=X&ite
ms=X

page: selected
page (default:
1)
items:
number of
items per
page (default:
20)

(array of
json
objects)
services
matching
query

Retrieve Service
Catalogue List
(public)
obtain a paged list of
all available services;
the filter can contain
every field from
resource description
schema

GET /service?query_fi
eld=query_value
&field2=value2

service
catalogue
query in the
format: field,
value

(array of
JSON
objects)
services
matching
query

Query Service
Catalogue List
(public)
obtain a list of services
which name or
description match the
provided search terms

39

https://hackmd.io/faNBTCUcSRyQsLOf_Jhdag

HTTP
method URI Arguments Return

value Description

GET /service/
SERVICE_ID

service_id:
numerical
identifier of
service

JSON
object with
service
description

Read Service
Description (public)
obtain details of a
service description

POST /service body: JSON
object with
service
description

JSON
object with
name of
the service
and
assigned
service-id

Create Service
Description provide
details of a service
description and persist
on the configured
storage

PUT /service/
SERVICE_ID

service_id:
numerical
identifier of
service; body:
JSON object
with service
description

JSON
object with
name of
the service
and
assigned
service-id

Update Service
Description provide
details of a service
description and update
on the configured
storage

DELETE /service/
SERVICE_ID

service_id:
numerical
identifier of
service

JSON
object with
name of
the service
and
assigned
service-id

Delete Service
Description mark
service as deleted on
the configured storage

Table 4.1: Service Discovery APIs

40

4.2.2 Organisation and User Accounts APIs

Organisation and User Accounts APIs provide interfaces for creating users and
organisations, and basic interactions with wallets. All API calls must be authenticated
(i.e., non-public) and write operations are accessible only to administrators.

HTTP
metho

d
URI Arguments Return value Description

GET /organization/
ORGANIZATION
_ID

organization_
id: numerical
identifier of
organisation

JSON object
with
organisation
details

Read Organisation
obtain details of an
organisation

POST /organization/ body: JSON
object with
organisation
details

JSON object
with name of
the
organisation
and assigned
organization-id

Create Organisation
provide details of an
organisation and
persist on the
configured storage

PUT /organization/
ORGANIZATION
_ID

organization_
id: numerical
identifier of
organisation;
body: JSON
object with
organisation
details

JSON object
with name of
the
organisation
and assigned
organization-id

Update
Organisation
provide details of an
organisation and
update on the
configured storage

DELETE /organization/
ORGANIZATION
_ID

organization_
id: numerical
identifier of
organisation

JSON object
with name of
the
organisation
and assigned
organization-id

Delete Organisation
mark organisation as
deleted on the
configured storage

GET /organization/
ORGANIZATION
_ID/list

organization_
id: numerical
identifier of
organisation

(array of JSON
objects) users
of the
organisation

Retrieve User List
for Organisation
obtain a list of users
for given
organisation

GET /user/USER_ID user_id:
numerical
identifier of
user

JSON object
with user
details

Read User obtain
details of a user

41

HTTP
metho

d
URI Arguments Return value Description

GET /user/USER_ID/
wallet

user_id:
numerical
identifier of
user

JSON object
with user
wallet details

Read User Wallet
obtain wallet details
of a user

POST /user body: JSON
object with
user details

JSON object
with name of
user and
assigned
user-id

Create User provide
details of a user and
persist on the
configured storage

PUT /user/USER_ID user_id:
numerical
identifier of
user; body:
JSON object
with user
details

JSON object
with name of
user and
assigned
user-id

Update User provide
details of a user and
update on the
configured storage

DELETE /user/USER_ID user_id:
numerical
identifier of
user

JSON object
with name of
user and
assigned
user-id

Delete User mark
user as deleted on
the configured
storage and remove
all personally
identifiable
information

Table 4.2: Organisation and User Accounts APIs

4.2.3 Storage Provider APIs

Storage Provider APIs provide users and applications with high-level interfaces that
are common to all of the supported backend storage services, both members of the
ONTOCHAIN ecosystem, and external services. Storage providers are also registered as
services and can be searched in the Service catalogue like any other service.

42

HTTP
method URI Arguments Return value Description

GET /collection/list none (array of
JSON
objects)
collection-id
and name of
collection

Retrieve
Collection List
obtain the list of
collection of
objects

GET /collection/
COLLECTION_ID

collection_id:
numerical
identifier of
collection

JSON object
with
collection
details

Read Collection
obtain details of a
collection

POST /collection body: JSON
object with
collection
details

JSON object
with name of
collection
and assigned
collection-id

Create Collection
provide details of a
collection and
persist on the
configured storage

PUT /collection/
COLLECTION_ID

collection_id:
numerical
identifier of
collection;
body: JSON
object with
collection
details

JSON object
with name of
collection
and assigned
collection-id

Update Collection
provide details of a
collection and
update on the
configured storage

DELETE /collection/
COLLECTION_ID

collection_id:
numerical
identifier of
collection

JSON object
with name of
collection
and assigned
collection-id

Delete Collection
mark collection as
deleted on the
configured storage

POST /object/OBJECT_ID/
USER_ID

object_id:
numerical
identifier of
object;
user_id:
numerical
identifier of
user

JSON object
with name of
object,
assigned
collection-id
and object-id,
and object
access
information

Check Object
Access checks the
access control for a
particular user to
access a particular
object

43

HTTP
method URI Arguments Return value Description

GET /object/OBJECT_ID object_id:
numerical
identifier of
object

JSON object
with object
details
(metadata)

Read Object
(metadata) obtain
details related to
an object

GET /object/OBJECT_ID/
read

object_id:
numerical
identifier of
object

JSON object
(object itself)

Read Object
(object itself)
obtain the object

POST /object body: JSON
object with
object
metadata

JSON object
with name of
object and
assigned
object-id &
collection-id

Create Object
(metadata)
provide details of
an object and
persist on the
configured storage

PUT /object/OBJECT_ID/
write

object_id:
numerical
identifier of
object; body:
JSON object
(object itself)

JSON object
with name of
object and
assigned
object-id &
collection-id

Write Object
(object itself)
provide object and
persist on the
configured storage

PUT /object/OBJECT_ID object_id:
numerical
identifier of
object; body:
JSON object
with object
metadata

JSON object
with name of
object and
assigned
object-id &
collection-id

Update Object
(metadata)
provide details of
an object and
update on the
configured storage

DELETE /object/OBJECT_ID object_id:
numerical
identifier of
object

JSON object
with name of
object and
assigned
object-id &
collection-id

Delete Object
mark object as
deleted on the
configured storage

Table 4.3: Storage Provider APIs

44

4.3 ONTOLOGIES

Name Description Domain

New/
MyUpdate/
MyReused/
Reused

language

Data
Agreement

the data agreement
add metadata setting
the rules for sharing of
data

data
intermediation New JSON-LD

SOyA
Ontology

a data model authoring
and publishing
platform that also
provides functionalities
for validation and
transformation

data model
management MyUpdated OWL

DID Ontology

specifies the DID
syntax, a common data
model, core properties,
serialised
representations, and
DID operations

identity
management Reused OWL

SOyA DID
Ontology

extension of the DID
ontology for describing
constraints of DID
documents using SOyA

identity
management

New
(extended)

OWL,
SHACL

DTLF /
FEDeRATED

specifies the semantic
model for transport
sphere and enables a
multi-modal transport
labelling approach

data model
management Reused RDF

turtle

GS1

specifies DPP
vocabulary for the
production, transport
and marketmaker
spheres. DPP
architecture “network
of resolvers”

data model
management Reused

RDF
turtle,
JSON-LD

GoodRelations
specifies DPP
vocabulary for
marketmaker sphere

data model
management Reused OWL,

RDFa

Table 4.4: Ontologies

45

5 DETAILED WORK PLAN FOR IMPLEMENTATION AND DEPLOYMENT

(FINAL)

The work plan for implementing Babelfish during the 10-month funded project
duration takes a stepwise approach and is depicted in Figure 6.1.

Figure 6.1: GANTT Chart

There is a dedicated time for testing - especially for integrating with other
ONTOCHAIN projects - during the “Deployment & Documentation” phase in June and
July 2023. We are also committed to support Babelfish and the developed services
beyond the NGI ONTOCHAIN project, and are looking forward to collaborate on
relevant business cases.

5.1 WORK PLAN FOR IMPLEMENTATION

The implementation of the Babelfish project comprises seven building blocks that are
described below in the order we start working on it.

Data Model Validation

Data Model Validation builds on the Semantic Overlay Architecture functionality of
verifying a dataset against given constraints. This was already demonstrated in an
early technology preview for DID Document validation (online service available here:
https://didlint.ownyourdata.eu) and will in the next step be extended to Usage Policy
and Domain specific Data Agreement validation, and shall eventually provide a
general validation service.

46

https://didlint.ownyourdata.eu

This general validation service will be used as a demo case for the Service Catalogue in
the Gateway API and will be the first available use case - see section 2.4.

Target date: mid March 2023

Gateway API

The Gateway API component is the single entrypoint for developers and users to
interact with the results of the Babelfish project. Section 4.2 describes the exposed API
endpoints for Service Catalogue, Accounts Management, and Storage Providers.

This component will be complete when a full test suite (using automated tests based
on pytest) is available.

Target date: end of February 2023

Storage Providers

For managing collections and objects with the Gateway API it shall be possible to
choose between at least two alternatives. And since data can be maintained either
on-chain (i.e., data stored on a distributed ledger) and off-chain (for larger datasets
where blockchain would either be too expensive or because of legal reasons not
desired) the following 4 storage providers will be made available:

● Semantic Containern(off-chain data)
● Amazon S3 (off-chain data)
● Convex (on-chain data)
● Bellecour (on-chain data)

Each storage provider will include its own automated tests that will be added to the
Gateway API test suite.

Target date: end of April 2023

Metadata Handling

The metadata handling in Babelfish is an important building block to collect and
automate annotating datasets that pass through the Gateway API. Relevant
metadata handled by Babelfish include Usage Policies, Provenance and Schema
information, and handling of identifiers - this includes links between data that is
stored off-chain but is also persisted through a cryptographic hash value on-chain.

Target date: end of March 2023

Data Model Transformation

47

Data Model transformation is about using alignment information between different
ontologies and automatically deducing how datasets can be transformed. Concrete
examples from various domains including supply chain will be used to validate the
approach and demonstrate the capabilities. We plan to use this method also for
generating a Digital Product Passport that summarises data from different sources
along a value chain.

The results from this component will be made available as a documented use case for
interoperability as described in section 2.5.

Target date: begin of May 2023

did:oyd Method

Identifiers are a crucial element in referencing datasets and Babelfish will heavily rely
on DIDs for this. Additionally, Verifiable Credentials (VCs) and Verifiable Presentations
(VPs) using did:oyd will be used for attestations from third parties. The did:oyd method
will be used as the DID method and to ensure interoperability our focus is on standard
compliance and community engagement. Therefore, in addition to implementing
relevant features like delegation and VC & VP management, we will also release an
updated detailed W3C conform specification of the did:oyd method and ensure full
compliance with the DID Test Suite6.

Target date: mid April 2023

Data Agreements

The Babelfish project will continue the work on Data Agreements from ONTOCHAIN
Call #2 funded project PS-SDA and will develop it further from the personal data
space domain into other domains like supply chain management. Usage Policies are
used to make it easier for organisations to provide initial information for compiling
Data Agreements between multiple entities and we will use Verifiable Credentials and
Verifiable Presentation to demonstrate consent from all involved parties.

Based on the Supply Chain Management Use Case (described in section 2.6) a
complete end-to-end example will showcase the use of Data Agreements.

Target date: mid May 2023

5.2 WORK PLAN FOR DEPLOYMENT

6 https://w3c.github.io/did-test-suite/

48

https://w3c.github.io/did-test-suite/

We plan regular deployments of the developed and updated software components in
the course of the project. Our primary site for testing functionality and deploying
off-chain storage is a Kubernetes cluster maintained by OwnYourData and services
will generally be available as a sub-domain of data-container.net and ownyourdata.eu.

For on-chain data we are using Convex and Bellecour from iExec as distributed ledger
technology. Deployment of smart contracts will take place during implementing the
Storage providers and should be available for testing in April 2023.

5.3 RISK ANALYSIS

The potential risks in the project that could delay implementation as stated in the
work plan in this chapter are listed below.

● Complexity of data model alignment and automated transformations
Mitigation: stepwise approach and use-cases addressing different aspects of
alignment

● Integration problems with existing ONTOCHAIN infrastructure and other
projects
Mitigation: close monitoring of planned milestones and regular reporting in
Scrum meetings

● Resource availability - because of the small team size an unexpected absence
of a team member would jeopardise project completion
Mitigation: substitutes were established where possible and regular internal
team meetings ensure to address any problems early on

The integration of ONTOCHAIN services in the Service Catalogue is crucial and
Babelfish is an important aspect as a single point of entry for the ONTOCHAIN project.
We will provide detailed information in the form of documents and tutorials to be
shared with other projects in order to accelerate and define requirements.

49

6 BUSINESS MODEL AND EXPLOITATION PLAN (PRELIMINARY)

6.1 BUSINESS MODEL DESCRIPTION

The business model for an
ONTOCHAIN service component
like Babelfish is basically described
by the provision of SaaS and
related Saas consulting
complemented by dedicated
business development consulting.
Therefore, we established sales
cycles with ONTOCHAIN
participants (Convex, PS-SDA,
TruSSIHealth, Origintrail DKG,

GIMLY ID) which are positioned in ONTOCHAIN value network to experiment with
loosely coupled exchange constellations and fulfil our role as Gateway API service
component. The ONTOCHAIN platform is proposing to withhold a certain percentage
of its application service fees paid by end-users of main business use cases.

A second business scenario for the Babelfish capabilities is to design and coordinate
an ecosystem business model during our early engagement activities: For this
scenario, Kybernos is acting in roles as initiator, ecosystem steward and knowledge
worker for design artefacts Digital Product Passport DPP based on Domain specific
Data Disclosure Agreements (D3A).

Shared narrative and mission for the ecosystem: “design and lead with purpose to
transform the food supply chains towards net zero goals”. The ecosystem steward has
detailed understanding of supply chain network design, strategy, standards and
terminology. Regarding the strategically designed SaaS provision of a food value chain
specific DPP functionality we place our business development focus on

1. the design phase to facilitate domain data exchange: we have designed
functionality specifiable and programmable with SoyA data models on
attribute level around the storage provider within an ecosystem-relevant
governance element with requirements regarding data and value exchange.
This data intermediation service provider DISP, the commercial provider of the
DPP scheme which we design for the domain data agreement (upstream) and
the domain data disclosure agreement (downstream). We experimentally
expose and mint at least two concrete purposes: “transport labelling” and
“geographical designations of origin”.

2. We motivate early adopters to share the selected purposes, to perform all
needed preparatory tasks and join the ecosystem: a beekeeper, a specialised

50

transport service provider (a cargo bike service) and a food shop register their
organisations and their acting users via Babelfish Gateway API or a “minimum
frontend” and create their credentials to fulfil their roles in our sequence
diagram based on OYDIDs VC/VP functionality.

3. Data stewardship the data governance principles of an organisation to ensure
data quality and consistency. It includes:

a. Knowing all data that has relevance for the ecosystem
b. Dealing with competitively sensitive data, usability, trust, and reliability
c. Understanding the location of data
d. Maintaining acceptance, transition transparency of implemented data

models and accuracy of data
e. Implementing usage policies, i.e., Domain specific Data Agreements

through the data intermediary and Domain specific Data Disclosure
Agreement (D3A) for using data in a Digital Product Passport

f. Enabling the ecosystem to utilise domain data to gain a competitive
advantage

g. Advocating the use of reliable data in wider domain data space

Minimum design artefacts and system function:

● Purpose (sharing of competitively sensitive information)
● Data models (SoyA-Process)
● Data Intermediary concept (Intermediary, Storage Provider, Domain Data

Controller, DPP scheme as ultimate business goal)
● Wallets / Front Ends / Connectors

○ for knowledge workers as system designer & shaper
○ for scheme participants
○ for customers

We use net zero policy-driven incentive structures for domain data exchange
(production, transport) and we will be able to resell third-party service components
(Targomo).

We will be validating our arguments and eventually the designed treatment with real
demand and users according to the early adopters engagement plan.

6.2 BUSINESS VALUE FOR THE BLOCKCHAIN DOMAIN IN GENERAL

The Babelfish project provides data intermediation project designers some basic
orchestration functionality as generically described in our generic user stories and in
our ecosystem user story for the food supply chain domain. The applicability of this set
of functionality within the supply chain management domain in section 2.6 is able to
demonstrate two concrete purpose-driven data and therefore value exchange
constellations within the dominant supply chain transparency framework which is

51

based on some crucial blockchain functionality despite the fact that some blockchain
solutions of the 1st blockchain wave in supply chains (e.g., Maersk’s IBM Trade Lens)
have to transform or even already stopped their operations due to unsolvable
governance challenges.

Using light-weighted components like Babelfish in the food supply chain has the
potential to improve supply chain transparency and traceability bottom-up and create
some upstream momentum as well as reduce administrative costs related to the
limited existing solutions for transport labelling and designation of origin as our
selected purposes. New blockchain-based mechanisms as offered by the ONTOCHAIN
environment are presenting promising opportunities for the transformation of
existing supply chains towards rising net zero goals of supply chain actors.

A supply chain featured with strategically designed blockchain together with
non-blockchain functionality can help supply chain actors record price, date, location,
quality, certification, and other for DPP-purposes relevant information to more
effectively manage the supply chain.

6.3 BUSINESS VALUE AND RELEVANCE FOR ONTOCHAIN

What is the link between your business and ONTOCHAIN?

Regarding the reference document for Ontochain’s business model we follow the
valid scenario “Babelfish as service component” for the Ontochain software
ecosystem and demonstrate the Babelfish software modules in the supply chain
data domain.

What would the value exchange be?

At the end of the design phase, we see three interconnected value exchange
scenarios based on given storage provider mechanisms which we plan to validate
during early user engagement phase:

1. OYD-based value exchange: Demonstrate domain specific DISP functionality
2. Convex-based value exchange: Value exchange via “by juice” as DPP scheme

currency
3. Origintrail-based value exchange by TRAC token; see best practice “SCAN

Trusted Factory”

The potential success of DGA-compliant data intermediaries crucially rests on some
factors: the accuracy of the claim that a lack of trust has been the main reason
hampering the development of data intermediaries, and the regulation’s ability to
promote the needed levels of trust in data intermediaries.

52

In order to be accredited as a provider of data intermediation services, providers
must therefore play an active role in establishing direct commercial relationships
between businesses..

As Recital 28 DGA clarifies, it is not sufficient to merely provide the technical tools for
data sharing without the aim to establish or gather information on commercial
relationships between data holders and users. Data intermediaries must actively
assist in the establishment of (direct) commercial relationships for the purposes of
data sharing through technical, legal or other means. In other words, data
intermediaries must act as matchmakers by connecting data holders and data users
with each other, thereby initiating data transactions. (von Ditfurth, Lienemann 2022 -
The Data Governance Act)

We directly contribute with our Babelfish approach to

● the Specific Objective 1 ONTOCHAIN ECOSYSTEM Setup, with Gateway API
and Storage Provider;

● the Specific Objective 2 ONTOCHAIN Technological Framework Design, with
privacy aware and secure data exchange and value sharing and
participation/contribution incentives;

● the Specific Objective 3 ONTOCHAIN Ecosystem experimentation, with supply
chain knowledge workers to form a transformative supply chain DISP.

6.4 ANY OTHER IMPACT

With our designed Babelfish capabilities to enable various ESG purpose-focused data
exchange we support the external effects’ policy stream in both directions:

● internalisation of negative external effects by design principle “accountability”
● incentivisation of positive external effects (network effects with loosely coupled

operational system connecting the spheres)

We anticipate a strong demand for data-driven ESG policy innovation on EU level as
well as on all multi-level governance (NUTS) levels below due to already existing “net
zero” target claims.

Two business risk categories which are inherent to the second business scenario of
the Babelfish project could create positive impacts towards a widely shared
governance for supply chain transformations:

1. The inherent complexity risk of the Babelfish project
a. mitigation by safeguarding project management structures across

various stakeholders involved; understand and help drive complex

53

design and development decisions; incentivise participation by
purpose-orientation across the stakeholders involved.

b. mitigation by purpose-oriented commercial risk analysis of design
artefact “competitively sensitive information” as subtasks for data
agreement’s purpose specification.

c. mitigation by coordination with key stakeholders, other DPP system
shapers, engagement with a knowledge workers of stakeholder groups

2. The inherent governance risk, market dynamics risk, market domination risk:
a. description: There is always a risk that an overly rigid interpretation of

Article 101 of the ​​Treaty on the Functioning of the European Union
(TFEU) can actually have negative effects on competition and innovation.
It is becoming increasingly clear that the ability to collect and retain
exclusive control over data could also be used as a market control
mechanism. If a competitor or an innovator would require access to
certain data to build or expand its own services, and this data would only
be accessible with the cooperation of the data holder, then that data
holder could in principle exercise significant influence over its market
(Graux 2022 - Sharing Data (Anti-)Competitively)

○ mitigation: design and pre-specification of data agreements along given
categories to enhance DPP’s acceptance in food sector

○ mitigation: Initiate the DISP as organising entity around the storage
provider functionality with conscious design loops to enhance
stakeholders’ acceptance

○ mitigation: to enable favourable purpose-focused supply chain
cooperations – which inevitably require some data sharing – to exist, the
EU supports a mechanism of so-called Horizontal Block Exemption
Regulations (HBERs).

54

7 EARLY USER ENGAGEMENT PLAN

Our first engagement with project outcomes relevant to an external user group was
with the Decentralised Identity Foundation (DIF). We presented the DID Lint service
(a DID Document validator) in the DIF Identifiers & Discovery Working Group in early
January and received very positive feedback to our work. We plan to regularly post
updates and news about our developed services and how it relates to DIF standards.
Additionally, we can participate in DIF events and conferences as speakers to further
build relationships with this community.

The Data Agreements should be based on a format that is interoperable. We plan to
engage closely with the DIF data agreement task force to select a method of signing
the agreement. Additionally we will also be checking what fields in the data
agreement are being considered and introduce some of the concepts we are
introducing in this project. Namely that data agreement may be used in domain
specific areas and not associated with individuals but organisations.

Another community where some of our team members are already well connected
is the MyData Network: MyData is a global network of individuals, organisations, and
communities working towards empowering individuals with their personal data.
Building on the work from ONTOCHAIN call #2 funded project PS-SDA about Data
Agreements, we are extending the concept towards domain specific Data
Agreements. By actively participating in MyData events and online forums, we can
connect with users who are passionate about personal data privacy and use
feedback from this group.

Another way to engage with users is to host workshops and webinars that focus on
the use of our services and its benefits. These events can be targeted towards
specific user groups such as developers, privacy advocates, and supply chain
management stakeholders. During these events, we can provide hands-on training,
demos, and open discussions to further educate users on our service and its features.
This will not only help us build a loyal user base but also generate positive
word-of-mouth for our product.

Specifically in the domain of supply chains the demonstrations of both purposes
(transport labelling and designation of origin) are planned with a short supply chain
around the City of Vienna. Therefore we will directly engage the needed stakeholder
expertise and traction via the Kybernos network. This network comprises the Clever
Clover FMCG accelerator and its portfolio of FMCG startups.

We develop our scalability matrix along three dimensions:

- supply chains: we start with a short non-industrial, regional honey supply
chain around Vienna. This experiment should be the basis for our sales cycle
with the City of Vienna and further regional FMCG supply chains which we
want to elaborate together with our strategic partner Clever Clover.

55

- data sharing purposes: we start with designation of origin as purpose within
the production sphere and transport (mode) labelling as purpose within the
transport sphere; we combine both purposes in a DPP and are therefore
actively demonstrating within the market maker sphere.

- jurisdictions (NUTS regions): we start in the eastern region (NUTS:AT-1) of
Austria (NUTS:AT). Our Food Hinterland System FHS policy partner, the City of
Vienna (NUTS:AT-13) is the first example of NUTS-2 basic regions which we will
address for the application of regional policies. The next strategic region ist
Lower Austria (NUTS:AT-12) which is a crucial system partner of Vienna’s food
hinterland. Our concrete honey experiment will touch NUTS-3 and small
regions for specific diagnoses regarding our defined purposes in Lower Austria
and/or Vienna.

To fully elaborate the market potential of a DPP we are strategically integrating with
the 20+ living labs of the Federated Project and EU’s Digital Transport and Logistics
Forum DTLF. Additionally, Kybernos is a member of relevant expert groups of
UN/CEFACT.

We are aiming at the “Marktamt”, the market office authority in the City of Vienna to
leverage the outcomes of our Food Hinterland System project with Babelfish. The
most concrete business stream is with Clever Clover as Europe’s #1 accelerator for
FMCG startups. Therefore, we are connected with an Austrian food startup cluster
which has some players with European scalability which are already funded by the
EIC funding scheme.

Another already prepared “real option” of our business model beyond the Ontochain
project: we can address and specify the designed DPP structures for industrial
supply chains with soft commodities like the sugar supply chain.

56

8 CONCLUSIONS

This document outlined the design of the planned Gateway API and accompanying
use cases of the Babelfish project. It addresses the key requirements and challenges
identified in the project scope. The system architecture is robust, scalable and easy to
maintain, making it suitable for the intended use case. It aims to make the integration
with existing systems (other projects) seamless, improves interoperability, and meets
the objectives of the project.

Overall, the proposed design is a comprehensive solution that caters to the needs of
the stakeholders and delivers a high-quality user experience. The team is confident
that the proposed design will be successful in meeting the project objectives and
delivering the desired results. We are committed to providing ongoing support and
maintenance to ensure the continued success of the project.

Based on this design and the implementation & deployment plan the
implementation will be described in deliverable D3 Implementation scheduled for
end of May 2023.

57

