

Grant Agreement No.: 957338
Call: H2020-ICT-2020-1

Topic: ICT-54-2020
Type of action: RIA

BABELFISH

D1. USE CASE SCENARIOS, DETAILED TECHNICAL

SPECIFICATION, IMPLEMENTATION WORK PLAN,
AND

DEPLOYMENT PLAN (DRAFT)

DUE DATE 02/12/2022

SUBMISSION DATE 02/12/2022

TEAM OwnYourData & Kybernos

VERSION 1.0

AUTHORS Christoph Fabianek, Sebastian Haas

1

EXECUTIVE SUMMARY

Alluding to the project name, Babelfish comes from Hitchhiker's Guide to the Galaxy
by Douglas Adams. Babelfish is a small yellow fish that when placed in someone’s
ear translates any language into their first language. This project proposes to
describe services on a technical, semantic, and governance layer and will implement
a component that uses such descriptions to translate interfaces (APIs), data, and data
agreements from a foreign (and maybe proprietary format) to an interoperable
format understood by the recipient. A registry maintains a list of all services and thus
spans up an interoperable data space.

In this document we identify relevant stakeholders and map those on requirements
based on the scope of a Gateway API, ONTOCHAIN’s previous work, and aspects from
Supply Chain Management (SCM). To complete the picture, we formulate user stories
from a technical perspective as well as the SCM context. A state-of-the-art analysis
includes relevant standards and already existing software components that will be
used in the course of the development: (i) Semantic Container (SemCon) for
technical interoperability - enabling to connect APIs and handling authentication as
well as processing aspects; (ii) Semantic Overlay Architecture (SOyA) for data
harmonisation - using RDF and JSON-LD for data model management and aligning
& transforming data models on the fly; (iii) Data Agreements - covering data
governance, tracking provenance metadata and act as usage policies between
services describing rules for the use of data.

A chapter on software design and component specification provides the current
(preliminary) implementation plan for developing the Gateway API and
encompasses (i) a Service Description that will be used by participants of the
ONTOCHAIN environment to form a service catalogue, (ii) the Gateway API
component called Babelfish to process Service Descriptions, and (iii) a concrete use
case in SCM to demonstrate the planned features. A work plan and outlook of the
next steps concludes this deliverable.

2

TABLE OF CONTENTS

1 INTRODUCTION 6

2 MOTIVATION AND PLANNED FUNCTIONALITIES 7
2.1 Stakeholder 7

2.1.1 Supply Chain Management Stakeholder Goals 8
2.2 Non-functional Requirements 10

2.2.1 Performance and Scalability 10
2.2.2 Portability and Compatibility 10
2.2.3 Reliability, Availability, and Maintainability 11
2.2.4 Privacy and Security 11

2.3 Service Discovery 11
2.4 Organisation and User Accounts 13
2.5 Storage Service Results/Output 16
2.6 Interoperability 19

3 USER STORIES AND USE CASE ANALYSIS 21
3.1 User Stories for Gateway API 21
3.2 User Stories and Context for Supply Chain Management Use Case 23

4 STATE OF THE ART ANALYSIS, BACKGROUND, AND INNOVATION 25
4.1 State of the Art Analysis 25
4.2 Description of Background 26

4.2.1 Semantic Container 26
4.2.2 did:oyd Method (OYDID) 27
4.2.3 Semantic Overlay Architecture (SOyA) 27

4.3 Innovation Compared to the State of the Art 28

5 SOFTWARE DESIGN AND ANALYSIS, COMPONENT SPECIFICATION (PRELIMINARY) 29
5.1 Software Modules 29

5.1.1 Service Description 29
5.1.2 Babelfish Sequence Diagram 29
5.1.3 Use Case Sequence Diagram 31

5.2 Architecture Diagram 33

6 DETAILED WORK PLAN FOR IMPLEMENTATION AND DEPLOYMENT (PRELIMINARY) 35

7 CONCLUSIONS 37

3

LIST OF FIGURES

Figure 2.1: Event Producers 8

Figure 2.2: Architectural Elements 9

Figure 3.1: Supply Chain Management Context 24

Figure 5.1: Babelfish Sequence Diagram 31

Figure 5.2: Honey Use Case Sequence Diagram 33

Figure 5.3: Architecture Overview 35

Figure 6.1: GANTT Chart 36

LIST OF TABLES

Table 2.1: Performance and Scalability Requirements 10

Table 2.2: Portability and Compatibility Requirements 10

Table 2.3: Reliability, Availability, and Maintainability Requirements 11

Table 2.4:Privacy and Security Requirements 11

Table 2.5: Service Discovery Requirements 13

Table 2.6: Organisation and User Accounts Requirements 16

Table 2.7: Storage Service Results/Outputs Requirements 19

Table 2.8: Interoperability Requirements 19

4

ABBREVIATIONS

API Application Programming Interface

DID Decentralised Identifier

DRI Decentralised Resource Identifier

FMCG Fast Moving Consumer Goods

IP Internet Protocol

SCM Supply Chain Management

SDG Sustainable Development Goals

TCP Transmission Control Protocol

VC Verifiable Credential

VP Verifiable Presentation

5

1 INTRODUCTION

With the Gateway API component in the ONTOCHAIN environment we will address
the challenge of interoperability in a heterogeneous environment. Interoperability by
itself provides overall system benefits at different, distinct dimensions and a common
approach1 is to distinguish between the following aspects: technical (connectivity),
semantic (informational), and organisational (governance, business models etc.)

● On the technical level connectivity, syntactics, and protocols for data exchange
(e.g., APIs) and data storage underpin basic integration;

● the semantic level requires harmonised information with shared data models
and mutually agreed content; and

● the organisational level (usually only addressed in more mature ecosystems)
encompasses shared objectives and policies between organisations.

In this document the first version of our planned approach for the Gateway API is
described. We identified relevant requirements to conclusively answer the question of
WHAT to build and also addressed our planned approach to validate developments in
the supply chain management domain. Existing components used as a basis for
developing the software artefacts are described and provide the foundation for
reaching the challenging goals of this project.

An overview architecture diagram and work plan conclude the document and will be
complemented in February 2023 by deliverable D2 Design.

1 ‘Architecture constraints for Interoperability and composability in a smart grid’, Power and
Energy Society General Meeting, 2010 IEEE.
https://www.researchgate.net/publication/224178883_Architecture_constraints_for_Interopera
bility_and_composability_in_a_smart_grid

6

https://www.researchgate.net/publication/224178883_Architecture_constraints_for_Interoperability_and_composability_in_a_smart_grid
https://www.researchgate.net/publication/224178883_Architecture_constraints_for_Interoperability_and_composability_in_a_smart_grid

2 MOTIVATION AND PLANNED FUNCTIONALITIES

This section presents the performed work in the project regarding current status and
requirements elicitation. In the course of the project the following steps were already
performed respectively are planned in the next months:

● research and familiarise with NGI ONTOCHAIN ecosystem
● identify relevant list of stakeholders and describe their needs as well as their

environment where they operate and make decisions
● describe requirements (this document) and deduce the Design Specification

(D2, due in February 2023)
● setup a dedicated test system for deploying and verifying available

components and iteratively feedback any learnings
● deploy solution with partners and other ONTOCHAIN participants to collect

further feedback

2.1 STAKEHOLDER

Initially, a list of relevant stakeholders was compiled:

● Consumers access information (tagged as publicly available) collected along
the value chain
(tag: ind)

● Entities generating events (i.e., data from organisations) and authorised parties
accessing data to facilitate interoperability
(tag: event)

● Regional stakeholders, regulators, authorities, and institutions provide the
framework for business
(tag: reg)

● Technical infrastructure that enables interoperability / builds a common data
space for all actors
(tag: infra)

All requirements were mapped to at least one of those stakeholders to document
source and motivation. During the course of the project multiple data flows will be
implemented that demonstrate the interaction of above stakeholders.

7

2.1.1 Supply Chain Management Stakeholder Goals

For the Supply Chain Management use-case the list of stakeholders above can be
described in more detail:

● “direct, events-producing” supply chain parties (i.e. institutions, organisations,
enterprises): any authorised stakeholder to the trade transaction should be able
to access the same data in order to facilitate multi-modal transport and
interoperability in the exchange of data across varying modes of transport
platforms

○ production parties (farmers, producers, processors / refiners)
○ transport parties (shippers / forwarders / carriers)

Figure 2.1: Event Producers

● “indirect, systems’ minting” regional stakeholders & regulators: regulator-driven
business choreographies tend to be quite similar even though terminology for
business steps, documents, objects and entities may be different across the
modes of transport and also sometimes across sectors dealing with specific
types of goods/trade items; the fact that the choreographies are similar is a key
enabler for connecting the choreographies that currently exist only in specific
modes or industry sectors

○ local and regional authorities (“Gebietskörperschaften”)
○ national authorities

8

○ EU institutions
○ sector associations
○ UN work programme for 2023:

■ Market transparency – define a common trading language, with
minimum quality requirements for agricultural produce that
facilitate fair and sustainable trade, prevent technical barriers to
trade and contribute to economic growth (SDG 8)

■ Food security – promote the sustainable production and
consumption of quality agricultural produce, including the
prevention of food loss (SDG 2, SDG 12);

● Freight Data Space Interoperability Infrastructure
● Consumers

Figure 2.2: Architectural Elements

9

2.2 NON-FUNCTIONAL REQUIREMENTS

2.2.1 Performance and Scalability

Requirements that describe throughput under a given workload for a specific time
frame in each setting.

ID Tags Description

perf_1 infra The GatewayAPI shall handle at least 1.000 registered
services.

perf_2 infra A single instance of the Gateway API shall handle at least
100 requests per minute.

Table 2.1: Performance and Scalability Requirements

2.2.2 Portability and Compatibility

Requirements to make sure that the system can be operated now and in the
foreseeable future on the available platform infrastructure and also works together
with adjacent systems.

ID Tags Description

port_1 infra, reg Available standards and best practices for the respective
areas should be identified and adhered to.

port_2 infra Data exchange between building blocks shall use JSON.

port_3 infra Interfaces of the different components shall be clearly
defined and documented.

Table 2.2: Portability and Compatibility Requirements

10

2.2.3 Reliability, Availability, and Maintainability

Requirements describing the accessibility of the system to the users at a given point
in time and how to quickly recover from any failures.

ID Tags Description

rel_1 infra Components shall be easy to deploy and configure. (In this
project Docker containers are the preferred way to make
the developed software artefacts available.)

rel_2 infra All software components shall be documented.

rel_3 infra The system shall perform input validation.

Table 2.3: Reliability, Availability, and Maintainability Requirements

2.2.4 Privacy and Security

Requirements about privacy (safeguarding data) and security (authorization and
protection) needs from different stakeholders.

ID Tags Description

priv_1 ind, event All external data transfer shall be encrypted through TLS for
communication over a network.

priv_2 event Consent information for data exchange (Usage Policies and
Data Agreements) shall be inseparably linked to the
payload.

Table 2.4: Privacy and Security Requirements

2.3 SERVICE DISCOVERY

As defined in ONTOCHAIN’s D3.5 Framework Specification (section 3.2 Service
Discovery) the following API endpoints are required.

11

This module will provide a programmable way of discovering the services provided
through the ONTOCHAIN ecosystem. Access to the functions will be authenticated
and regular users will only have access to read operations. Write operations will be
accessible only to administrators, unless noted in the function’s description.

ID Tags Description

sd_1 event GET <base-uri>/list/count/page?filter=JSON
Obtain a list of all the available services as a JSON string.
Arguments count (max. 100) and page are used to control the
number of results. An optional argument can be provided to
filter the types of desired services; the argument is a
url-encoded JSON document that can contain every field of
the resource description schema. Returns a JSON document
with the desired result count (or less) and HTTP code 200 in
case of success, HTTP 400 if the provided filter cannot be
decoded, and code 401 if the user is not authenticated.

sd_2 event GET <base-uri>/service/search?query=QUERY
Obtain a list of services which name or description match the
provided search terms. The QUERY argument can contain
one or several url-encoded terms. Returns a JSON document
with matching project descriptions and HTTP code 200 in
case of success, HTTP 400 if QUERY is absent, and code 401 if
the user is not authenticated.

sd_3 event GET <base-uri>/service/SERVICE_ID
Obtain the detailed description of a service as a JSON string.
The argument is the service identifier that can be obtained
with the /list function (requirement sd_1). Returns a JSON
document and HTTP code 200 in case of success, HTTP 404 if
the requested service cannot be found, and code 401 if the
user is not authenticated.

sd_4 event POST <base-uri>/service/
Add a new service to the catalogue. The request body must
contain a JSON document containing the complete service
description. Returns HTTP code 200 in case of success, HTTP
400 in case the description has an incorrect format, and HTTP
401 if the user is not authenticated or does not have the
required privileges.

12

ID Tags Description

sd_5 event PUT <base-uri>/service/SERVICE_ID
Update the details of a service already stored in the catalogue.
The function takes the identifier of the service that must be
updated as an argument and the request body must contain
a JSON document containing the new service description.
Returns HTTP code 200 in case of success, 400 in case the
description has an incorrect format, 404 if the requested
service does not exist, and code 401 if the user is not
authenticated or does not have the required privileges.

sd_6 event DELETE <base-uri>/service/SERVICE_ID
Removes the service pointed by argument SERVICE_ID from
the catalogue. The service is not actually removed, it will only
be marked as deleted and it will no longer be part of the
results of the /list and /search functions (requirements sd_1
and sd_2).

Table 2.5: Service Discovery Requirements

2.4 ORGANISATION AND USER ACCOUNTS

As defined in ONTOCHAIN’s D3.5 Framework Specification (section 3.3 Organizations
and User Accounts) the following API endpoints are required.

This module provides interfaces for creating users and organisations, and basic
interactions with wallets. All API calls must be authenticated and write operations
are accessible only to administrators, unless specifically noted.

ID Tags Description

ou_1 event POST <base-uri>/organization/
Create a new organisation with no users. The request body
must contain the details of the organisation as a JSON
document (e.g. its name, short description, contact address).
The call returns the identifier of the new organisation and
HTTP code 200 in case of success. The call can also return
HTTP code 400 if the organisation description is not a valid

13

ID Tags Description

JSON document or if required fields are missing, and code 401
if the user is not authenticated.

ou_2 event PUT <base-uri>/organization/ORGANIZATION_ID
Updates the information related to an existing organisation.
The identifier of the organisation must be provided in the
query string, and the request body must contain the new
details of the organisation as a JSON document. The call
returns HTTP code 200 in case of success, code 400 if the
organisation description is not a valid JSON document or if
required fields are missing, 404 if the organisation does not
exist, and code 401 if the user is not authenticated.

ou_3 event GET <base-uri>/organization/ORGANIZATION_ID
Obtain the details related to an existing organisation. The call
takes the identifier of the organisation as an argument and
returns a JSON document containing the organisation’s
information. The call returns HTTP error code 200 in case of
success, 404 if the organisation does not exist, and 401 if the
user is not authenticated.

ou_4 event GET <base-uri>/organization/ORGANIZATION_ID/list
Obtain the list of users that are members of an organisation.
The identifier of the organisation is taken as the sole
argument to the call. The call returns a JSON array of objects
describing the users. In case of success, the call returns HTTP
code 200; the call can also return code 404 if the organisation
cannot be found, and 401 if the user is not authenticated.

ou_5 event DELETE <base-uri>/organization/ORGANIZATION_ID
Request the deletion of an organisation. The organisation will
be marked as deleted but no data will actually be removed, in
order to preserve the history of the platform. If the
organisation contains users, the users will not be removed but
will appear as independent. The only argument to the call is
the identifier of the organisation. In case of success, the call
returns HTTP code 200. The call can also return code 404 if
the organisation does not exist and code 401 if the user is not
authenticated or does not have the required privileges.

14

ID Tags Description

ou_6 event POST <base-uri>/user/
Create a new user. The request body must contain the details
of the user as a JSON document (e.g. its name, organisation,
email address, phone number). The call returns the identifier
of the new user and HTTP code 200 in case of success. The
call can also return HTTP code 400 if the user description is
not a valid JSON document or if required fields are missing,
and code 401 if the requesting user is not authenticated.

ou_7 event PUT <base-uri>/user/USER_ID
Updates the information related to an existing user. The
identifier of the user must be provided in the query string,
and the request body must contain the new details of the
user as a JSON document. The call returns HTTP code 200 in
case of success, code 400 if the user description is not a valid
JSON document or if required fields are missing, 404 if the
user does not exist, and code 401 if the requesting user is not
authenticated.

ou_8 event GET <base-uri>/user/USER_ID
Obtain the details related to an existing user. The call takes
the identifier of the user as an argument and returns a JSON
document containing the user’s information. The call returns
HTTP code 200 in case of success, 404 if the user does not
exist, and 401 if the requesting user is not authenticated.

ou_9 event DELETE <base-uri>/user/USER_ID
Request the deletion of a user. The user will be marked as
deleted and all of associated information (except its identifier,
in order to preserve the history of the platform) will be
removed. The only argument to the call is the identifier of the
user. In case of success, the call returns HTTP code 200. The
call can also return code 404 if the user does not exist and
code 401 if the requesting user is not authenticated or does
not have the required privileges.

15

ID Tags Description

ou_10 event GET <base-uri>/user/USER_ID/wallet
Obtain the details (chain, address, balance) of the user’s
wallets in the ONTOCHAIN ecosystem. The call takes the
identifier of the user as an argument and returns the wallet
information as a JSON document along with HTTP code 200
in case of success. The call can also return code 404 if the user
does not exist or has been deleted, and code 401 if the
requesting user is not authenticated or does not have the
required privileges.

Table 2.6: Organisation and User Accounts Requirements

2.5 STORAGE SERVICE RESULTS/OUTPUT

As defined in ONTOCHAIN’s D3.5 Framework Specification (section 3.4 Storage
Service Results/Output) the following API endpoints are required.

The module provides users and applications with high-level interfaces that are
common to all of the supported backend storage services, both members of the
ONTOCHAIN ecosystem, and external services. Storage providers can be searched in
the Service catalogue like any other service.

ID Tags Description

ssr_1 event POST <base-uri>/collection/
Create a new collection of objects, similar to a directory in a
file system. The call takes a description of the collection
(including the storage provider) in the JSON format as an
argument. The call only creates a record for the collection, it
does not store any data object. In case of success, the call
returns the identifier of the new collection and HTTP code
200. In case of failure, the call returns code 400 (if the JSON
document cannot be interpreted) and 401 if the user is not
authenticated or does not have the required privileges.

16

ID Tags Description

ssr_2 event PUT <base-uri>/collection/COLLECTION-ID
Updates the information related to an existing collection of
objects. The identifier of the collection must be provided in
the query string, and the request body must contain the new
details of the collection as a JSON document. The call returns
HTTP code 200 in case of success, code 400 if the collection
description is not a valid JSON document or if required fields
are missing, 404 if the collection of object does not exist, and
code 401 for unauthorised access.

ssr_3 event GET <base-uri>/collection/COLLECTION-ID
Obtain the details related to an existing collection of objects.
The call takes the identifier of the collection of objects as an
argument and returns a JSON document containing the
information of the corresponding collection of objects. The
call returns HTTP code 200 in case of success, 404 if the
collection of objects does not exist, and 401 for the
unauthenticated access request.

ssr_4 event GET <base-uri>/collection/list
Obtain the list of collection of objects. The call returns a JSON
array of objects describing the collection of objects. In case of
success, the call returns HTTP code 200; the call can also
return code 404 if the collection of objects cannot be found,
and 401 for unauthenticated access requests.

ssr_5 event DELETE <base-uri>/collection/COLLECTION-ID
Request the deletion of a collection of objects. The collection
of objects will be marked as deleted but no data will actually
be removed, in order to preserve the history of the platform. If
the collection of objects contains users, the users’ information
will not be removed but will appear as independent. The only
argument to the call is the identifier of the collection. In case
of success, the call returns HTTP code 200. The call can also
return code 404 if the collection ID does not exist and code
401 if the requester (user) is not authenticated or does not
have the required privileges.

17

ID Tags Description

ssr_6 event POST <base-uri>/object/
Create a new object. The call takes a description of the
collection (including the storage provider) in the JSON format
as an argument. The call only creates a record for the object.
In case of success, the call returns the identifier of the new
object and HTTP code 200. In case of failure, the call returns
code 400 (if the JSON document cannot be interpreted) and
401 if the user is not authenticated or does not have the
required privileges.

ssr_7 event PUT <base-uri>/object/OBJECT_ID
Updates the information related to an existing object. The
identifier of the object must be provided in the query string,
and the request body must contain the new details of the
object as a JSON document. The call returns HTTP code 200
in case or success, code 400 if the object description is not a
valid JSON document or if required fields are missing, 404 if
the object does not exist, and code 401 for unauthorised
access.

ssr_8 event GET <base-uri>/object/OBJECT_ID
Obtain the details related to an existing object. The call takes
the identifier of the object as an argument and returns a
JSON document containing the information of the
corresponding object. The call returns HTTP code 200 in case
of success, 404 if the object does not exist, and 401 for the
unauthenticated access request.

ssr_9 event DELETE <base-uri>/object/OBJECT_ID
Request the deletion of an object. The object will be marked
as deleted but no data will actually be removed, in order to
preserve the history of the platform. If the object contains
users, the users’ information will not be removed but will
appear as independent. The only argument to the call is the
identifier of the object. In case of success, the call returns
HTTP code 200. The call can also return code 404 if the object
ID does not exist and code 401 if the requester (user) is not
authenticated or does not have the required privileges.

18

ID Tags Description

ssr_10 event,
ind

GET <base-uri>/object/OBJECT_ID/read
Obtain the details related to an existing object. The call takes
the identifier of the object as an argument and returns
information of the corresponding object. The call returns
HTTP code 200 in case of success, 404 if the object does not
exist, and 401 for an unauthenticated access request.

ssr_11 event PUT <base-uri>/object/OBJECT_ID/write
Updates the information related to an existing object. The
identifier of the object must be provided in the query string,
and the request body must contain the new details of the
object as a document. The call returns HTTP code 200 in case
of success, code 400 if the object description is not valid or if
required fields are missing, 404 if the collection of object does
not exist, and code 401 for unauthorised access.

ssr_12 event POST <base-uri>/object/OBJECT_ID/USER_ID
Checks the access control for a particular user to access a
particular object. If the user has the access grant for accessing
the object it returns HTTP code 200. Returns code 400 if the
object id or user id are not valid or missing, 404 if the object
does not exist, and code 401 for unauthorised access.

Table 2.7: Storage Service Results/Outputs Requirements

2.6 INTEROPERABILITY

The Integration Helper in the Babelfish component provides mechanisms to support
interoperability between services and applications.

ID Tags Description

io_1 event,
infra

A System Description shall document all required information
for covering technical, semantic, and governance
interoperability aspects.

19

ID Tags Description

io_2 event,
infra

The system shall allow to connect API endpoints from
different services specified in their System Description to
allow for technical interoperability.

io_3 event,
infra

The system shall be able to transform between data models
from different services specified in their System Description to
allow for semantic interoperability.

io_4 event,
infra

The system shall compare Usage Policies from different
services in their System Description to evaluate compliance.

io_5 event,
infra

The system shall generate a Data Agreement between
compliant services based on their Service Description to cover
the governance interoperability aspect.

Table 2.8: Interoperability Requirements

20

3 USER STORIES AND USE CASE ANALYSIS

This chapter provides user stories based on the requirements from the previous
chapter. It is split between the technical view for implementing the Gateway API and
the perspective of supply chain actors as a sample use case.

3.1 USER STORIES FOR GATEWAY API

Service Discovery

As a service developer I want to be able to register a service in a service catalogue so
that others can easily discover it.

As a service developer I want to be able to update and delete my existing entries in a
service catalogue so that I can keep everything up-to-date.

As a developer I want to be able to query the service catalogue so that I’m able to
discover available services.

Organisation and User Accounts

As an organisation I want to be able to create an entry in a registry so that I can access
services with this identity.

As an organisation I want to be able to update and delete my organisation entry in the
registry so that I can keep it up-to-date.

As an organisation I want to be able to retrieve my stored data so that I can verify the
data.

As a user I want to be able to create an entry in a registry and assign it to an
organisation so that I can access services with this identity.

As a user I want to be able to update and delete my user entry in the registry so that I
can keep it up-to-date.

As a user I want to be able to retrieve my stored data (incl. configured chain, address,
balance) so that I can verify the data and have the latest version.

21

Storage Service Results/Output

As a developer I want to be able to create a collection so that I can store objects in the
collection.

As a developer I want to be able to update and delete collection entries so that I can
keep them up-to-date.

As a developer I want to be able to retrieve all information of a collection and a list of
all accessible collections so that I can verify the latest state.

As a developer I want to be able to create objects in a collection so that I can have a
flexible storage mechanism.

As a developer I want to be able to update and delete objects in a collection so that I
can keep them up-to-date.

As a developer I want to be able to retrieve the details about an object so that I can
work with the data and have the latest version.

Interoperability

As a service/application I want to be able to document my API endpoints, used data
model, and applicable usage policies in a Service Description so that this information
can be used for seamless integration with other services/applications.

As a service/application I want to be able to connect to other services/applications
independent of the respective API endpoints so that I can exchange data without
technical integration limits.

As a service/application I want to be able to connect to other services/applications
independent of the respective data models so that I can exchange data without
semantic integration limits.

As a service/application I want to be able to have usage policies automatically
validated upon data exchange so that I can exchange data with full governance
conformance.

As services/applications that exchange data we want to be able to have this data
exchange documented in a data agreement so that full governance conformance is
unambiguously documented.

22

3.2 USER STORIES AND CONTEXT FOR SUPPLY CHAIN MANAGEMENT USE CASE

Product Owner

As a supply chain party I want to be able to share and receive relevant data so that this
data can be used by other supply chain parties for planning, optimization and
documentation purposes.

Transport Service Provider

As a transport service provider I want to be able to share and receive relevant data so
that this data can be used by other supply chain parties for planning, optimization
and documentation purposes.

Supply Chain Party

As a supply chain party I want to be able to share and receive relevant data so that this
data can be used by other supply chain parties for planning, optimization and
documentation purposes.

Market Maker

As a market maker I want to be able to provide structured food product information
so that this data can be used by customers for market and product differentiation.

Regulator

As a regulator I want to be able to design, co-create and mint purpose-driven data
circles within the supply chain data space so that the shared data can be (re-)used for
data-driven circular economy policy schemes like the Digital Product Passport and
supply chain management regulations in general.

Region

As a region I want to be able to document and shape public procurement practices to
be able to reach net zero targets for the food and transport sector.

23

Data Intermediation Service Provider DISP for Digital Product Passport

As a data intermediation service provider I want to be able to structure and govern a
product data space around the regulator-driven design artefact Digital Product
Passport so that this structured and incentivised data exchange can be used by
consumers, regulators, investors and insurance companies for their purposes.

Figure 3.1: Supply Chain Management Context

24

4 STATE OF THE ART ANALYSIS, BACKGROUND, AND INNOVATION

This section is dedicated to the analysis of existing solutions, including developments,
and demonstrating the innovation potential of the solution compared to what already
exists.

4.1 STATE OF THE ART ANALYSIS

In the course of the project the following standards were identified and are adhered
to in developing the system:

● JSON-LD v1.1 a light-weight Linked Data format
described in detail here: https://www.w3.org/TR/json-ld/

● Decentralised Identifier (DIDs) for managing identities of entities;
described in detail here: https://www.w3.org/TR/did-core/

● Verifiable Credentials (VCs) expressing credentials on the Web in a way that is
cryptographically secure, privacy respecting, and machine-verifiable
described in detail here: https://www.w3.org/TR/vc-data-model/

● Open API Specification v3 is a programming language-agnostic interface
description for REST APIs
described in detail here: https://spec.openapis.org/oas/v3.1.0

● EPCIS (Electronic Product Code Information Services) enables disparate
applications to create and share visibility event data, both within and across
institutions, organisations, enterprises, and supply chain parties
described in detail here: https://ref.gs1.org/standards/epcis/

● Buy-Ship-Pay BSP Reference Data Model is the global dictionary for terms in
trade. The UN/CEFACT vocabulary is essential for bringing the rich BSP
semantic model for trade to the modern web environment
more information here: https://tfig.unece.org/contents/buy-ship-pay-model.htm

● GoodRelations is a powerful vocabulary for publishing details of products and
services in a way friendly to search engines, mobile applications, and browser
extensions
more information here: https://www.w3.org/wiki/GoodRelations

25

https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/
https://spec.openapis.org/oas/v3.1.0
https://ref.gs1.org/standards/epcis/
https://tfig.unece.org/contents/buy-ship-pay-model.htm
https://www.w3.org/wiki/GoodRelations

In addition, the following specifications were used or will be further developed:

● Data Agreements record conditions for an organisation to process data in
accordance with a privacy regulation (e.g. GDPR)
described in detail here:
https://github.com/decentralised-dataexchange/automated-data-agreements/
blob/main/docs/data-agreement-specification.md

● UNCEFACT and Traceability APIs (API definitions, JSON-LD vocabulary, and
testable mocks for a UN standard supply chain traceability service based on GS1
EPCIS)
described in detail here: https://github.com/uncefact/project-traceability

● did:oyd Method (OYDID) a self-sustained environment to manage
decentralised identifiers
described in detail here: https://ownyourdata.github.io/oydid/

● Semantic Overlay Architecture (SOyA) data model authoring and publishing
platform
described in detail here: https://ownyourdata.github.io/soya/

4.2 DESCRIPTION OF BACKGROUND

4.2.1 Semantic Container

Semantic Containers provide a standardised infrastructure for data provisioning and
allow data providers to efficiently distribute data without giving up control over its
usage and monetization while providing data consumers with efficient and
well-managed mechanisms to obtain and integrate data in a trustworthy and
reproducible manner. By packaging data and processing capabilities into reusable
containers, describing the semantics of the content and permissible usage, and
providing uniform interfaces, a data set becomes a commodity with well-defined
content, properties, quality, and usage policy, as well as clear ownership rights and a
price tag.

The Semantic Container approach leverages existing container technologies such as
Docker, which already provide scalable mechanisms for deploying complex software
assemblies and use them as a foundation for an infrastructure for data discovery,
provisioning, and integration. To create a suitable environment for the emergence of a
commodity market around data, a set of rules for permissible usage of the data is
captured in semantic descriptions, provides cryptographic methods to prove
ownership rights, and applies blockchain technology to guarantee immutability.

26

https://github.com/decentralised-dataexchange/automated-data-agreements/blob/main/docs/data-agreement-specification.md
https://github.com/decentralised-dataexchange/automated-data-agreements/blob/main/docs/data-agreement-specification.md
https://github.com/uncefact/project-traceability
https://ownyourdata.github.io/oydid/
https://ownyourdata.github.io/soya/

Complete audit trails of data sources and processing steps provide gapless
provenance and facilitate reproducibility.

4.2.2 did:oyd Method (OYDID)

The aim of the did:oyd method is to provide a decentralised identifier (DID) that is not
based on a distributed ledger. Many DID methods are based on blockchain
technology and provide a trust anchor based on the respective governance of the
used ledger for handling sensitive data. For certain aspects however, it could be
interesting to have DIDs that don't require the full stack of a decentralised system.
OYDID provides such a self-sustained environment for managing digital identifiers.
The did:oyd method links the identifier cryptographically to the DID Document and
through also cryptographically linked provenance information in a public log it
ensures resolving to the latest valid version of the DID Document.

A W3C conform DID Method Specification is available here:
https://ownyourdata.github.io/oydid/

4.2.3 Semantic Overlay Architecture (SOyA)

SOyA allows data structures to be described in simple terminology. This description
includes groups of data records with the same attributes, references between data
records, and meta-attributes of these data structures.

Datasets are referred to as "bases", while meta-attributes are summarised in so-called
"overlays". Overlays can contain information about attributes (e.g. detailed
descriptions, permissible values, or formatting), but also transformations into other
data structures.

For the exchange of these definitions of data structures, those structures can be
stored in online repositories. When saving in such repositories, 2 versions are created:

● the original variant with the given names of the individual artefacts (i.e. of
Structure, Base, and Overlay)

● a "frozen" variant where each name is replaced by a DRI; the DRI is a
content-based address, which is also the unchangeable fingerprint of the

27

https://ownyourdata.github.io/oydid/

content. This ensures that the previous version remains available if changes are
made later.

With the described definitions of data structures, concrete data can now be recorded.
SOyA offers the following functions:

● Acquire: If the attributes are named accordingly in a simple JSON ("flat JSON"),
a conversion into JSON-LD can take place automatically

● Validate: Existing data records can be checked for conformity using a Validate
overlay

● Transform: you can switch between data structures with a transformation
overlay; It is thus possible to retain existing data formats (legacy formats), while
automatic mapping to new standards is guaranteed

● Capture: with automatically generated HTML forms based on the structure
information, data can be conveniently visualised, recorded and processed

A W3C conform Community Group Specification is available here:
https://ownyourdata.github.io/soya/

4.3 INNOVATION COMPARED TO THE STATE OF THE ART

This section describes how Babelfish advances the state of the art identified in the two
previous sections.

The Gateway API will be implemented using the framework of Semantic Containers as
a basis and leverages existing functionality to interpret and semantically annotate
data as gateway to an actual storage provider. New functionality will include
authentication of organisations and users, as well as parsing a service description with
technical, semantic, and governance annotation to aid applications with integration.

This service description can be provided by other services and applications in the
ONTOCHAIN ecosystem and will form a service catalogue that describes the
dataspace formed by all participating actors. The technical aspects of a service are
described using the Open API Specification v3.0 (Swagger), semantic aspects build on
the Semantic Overlay Architecture (SOyA) and allow to describe data models together
with information about alignments with other ontologies as well as transformation
between used schemas, and governance aspects are described with usage policies
following the structure proposed by the Data Privacy Vocabulary.

The integration helper is able to parse the information in the service description
provided by each service and automatically map APIs, translate data, and ensure any

28

https://ownyourdata.github.io/soya/

restrictions defined in Usage Policies. The actual data exchange is then documented
in the provenance trail and as a Data (Sharing) Agreement also available as metadata.

Overall will the process of data exchange via the Gateway API be documented using
tutorials in the Supply Chain Management domain. Based on inputs from our
partners at Clever Clover (https://cleverclover.vc/, Europe's #1 FMCG Accelerator) and
established ontologies from the mobility domain, examples for Service Description
will provide real world use cases.

29

https://cleverclover.vc/

5 SOFTWARE DESIGN AND ANALYSIS, COMPONENT SPECIFICATION

(PRELIMINARY)

This section provides the technical specification of the solution and the overall
architecture diagram.

5.1 SOFTWARE MODULES

The main component to be developed in this project is the Gateway API. Based on
Semantic Container (described in Section 4.2.1) it provides API endpoints as specified
in the sections 2.3, 2.4, and 2.5 to provide a Service Catalogue, manage Organizations
& Users, and handle access to Storage Providers. Moreover, it will provide a flexible
Integration Helper to support entities (other services or applications) in exchanging
data. The next two subsections describe the necessary input (Service Descriptions)
and the expected process for this Integration Helper.

5.1.1 Service Description

For the Service Catalogue to be maintained with the API endpoints as described in
section 2.3 the following structure is currently planned:

● describe the interface - specifically API endpoints - and general aspects of the
entity using the Open API Specification v3 (also known as Swagger
documentation)

● document the expected data model using the Semantic Overlay Architecture,
i.e., describing classes, attributes, relations and associated meta-information
(incl. validation and transformation)

● specify any attached governance policies using as basis the structure from the
Data Privacy Vocabulary and extending it with concepts/vocabulary from
Supply Chain Management ontologies.

The Service Description itself will use a flat-JSON format for easy adoption by
developers.

5.1.2 Babelfish Sequence Diagram

Figure 5.1 depicts the sequence upon a data exchange between two entities.

30

Figure 5.1: Babelfish Sequence Diagram

Step 1 & 3: an entity registers its service description for the Service Catalogue and
information is stored (step 2&4) in the ONTOCHAIN environment (the configured
storage provider for the Service Catalogue)

Step 5: the actual data exchange can be either triggered by one of the participating
entities (Organization A or B) or be an external trigger - depicted in the sequence
diagram as “Initiator”

Step 6: upon starting a data exchange the Usage Policies (if present) for the
participating entities are evaluated and checked for compliance; if successful, a
Data Agreement is compiled based on the Usage Policies documenting the
governance aspects of this data exchange

31

Step 7: data is retrieved from the data providing entity (alternatively, it could also be
that a data exchange is triggered by a POST request and then the data is already
available to Babelfish and doesn’t need to be retrieved in this step)

Step 8: in case the Service Descriptions provide information about transforming data
between the two entities, this steps performs this transformation

Step 9: the payload is forwarded to the data consuming service

Step 10: the complete data exchange is documented in the ONTOCHAIN environment
(using the configured Storage Provider)

Another aspect of a data exchange are the various types of data generated in the
course of the process:

● Data: the actual payload sent from data provider to data consumer
● Metadata: additional information that either specifies specific aspects of the

payload or is generated in the course of the data exchange; examples for
metadata include:

○ Usage Policies: can be specified in the Service Description for any data
provided by an entity or can be specifically provided together with the
payload)

○ Provenance: if provided together with the data it is automatically
extended using Prov-O (W3C Provenance Ontology) by default

○ specific identifiers to address the data, e.g., hash for content-based
addressing

● Trust: to proof detailed aspects of the data, Verifiable Credentials (VC) can be
created to attest certain qualities; VCs are usually stored in the wallet of the
holder and require a Verifiable Presentation (VP) when requested by a verifier

● Access: data, metadata and trust artefacts are stored in different locations and
service endpoints document access to those artefacts; by default a DID
Document provides those service endpoints

5.1.3 Use Case Sequence Diagram

To demonstrate the use of Service Descriptions and the process of a data exchange
between two entities, a short supply chain management example will be used as
depicted in Figure 5.2.

32

Figure 5.2: Honey Use Case Sequence Diagram

33

In this example the following four data exchanges will be facilitated by the Babelfish
component:

● Produce Honey: a beekeeper produced a batch of honey and documents the
initial information (e.g., date, location of beehive, quantity)

● Transport Honey: in the most simple case the honey is sold locally and brought
by a bicycle courier to the shop where it is sold; source, destination, and mode
of transported are documented in this step

● Sell Honey: at a shop the batch of honey (e.g., 40 jars) is then assigned with
unique identifiers per jar (derived from the batch identifier) and offered to
customers

● Buy Honey: a customer can then use the identifier (e.g., provided through a QR
code on the honey jar) to retrieve all associated information from the product;
providing such information is compiled by a separate entity (Chamber of
Agriculture in the example above) that uses data stored in the ONTOCHAIN
environment (i.e., the configured Storage Provider)

5.2 ARCHITECTURE DIAGRAM

The Gateway API will be a single component in the ONTOCHAIN environment
exposing available resources to other services and applications as well as external
applications.

34

Figure 5.3: Architecture Overview

A Service Catalogue provides based on Service Descriptions a list of available services.
Such descriptions are a combination of technical, semantic, and governance
information for a service / an application and facilitate integration into the
ONTOCHAIN environment. Based on this information an Integration Helper can be
used to map APIs, translate data models between entities and ensure governance
through Data Agreements. Backend storage services (either from within the
ONTOCHAIN ecosystem as well as external services) are part of the Service Catalogue.
Account Management is provided on an organisation- and user-level to provide
authentication mechanisms.

From a technology viewpoint the Gateway API is a mediator within the ONTOCHAIN
environment publishing available functions and ensuring governance. To allow for a
stand-alone testing of the Gateway API core functions like storage and identities are
provided through the internal use of Semantic Containers and the did:oyd method
respectively. Nevertheless, other standard-conform storage and identities
mechanisms can be used as well.

35

6 DETAILED WORK PLAN FOR IMPLEMENTATION AND DEPLOYMENT

(PRELIMINARY)

The work plan for implementing Babelfish during the 10-month funded project
duration takes a stepwise approach and is depicted in Figure 6.1.

Figure 6.1: GANTT Chart

Work Package #1 Project Management (Oct 2022 - Jul 2023)

This WP spans the whole project duration and covers all administrative aspects of
internal communication, organising meetings, and monitoring progress.

Work Package #2 Requirements and Design (Oct 2022 - Feb 2023)

Deliverables D1 & D2 for Requirements and Design are discussed, written, and
reviewed in this WP. These documents describe the detailed features to be
implemented and tested in the course of the project.

Work Package #3 Engineering (Nov 2022 - Apr 2023)

Features specified in WP2 are implemented in WP3. This WP also includes packaging,
documenting, and publishing the source code to make it easier for others to find and
integrate the developed software artefacts.

Work Package #4 Integration and Use Cases (Jan - Jun 2023)

Software artefacts developed in WP3 will be verified and demonstrated in various use
cases. (Currently, 2-3 full-fledged use cases are planned.) This includes refining the
deployment process, writing tutorials for aiding in adoption, and recording short
videos for demonstration purposes.

36

Work Package #5 Business Development (Feb - Jul 2023)

WP5 describes the business aspects of this project to use Babelfish and relevant
technologies beyond the project. The focus is here on Supply Chain Management and
our collaboration with Clever Clover - Europe's #1 FMCG Accelerator.

37

7 CONCLUSIONS

This document outlined the requirements and use cases identified in the initial
design phase of the Babelfish project. Based on a stakeholder analysis and the goals
defined in the project proposal the main objectives were identified and
non-functional as well as functional requirements were documented. Based on these
requirements the design will be described in deliverable D2 Design.

38

